Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
ARCHIMEDIS
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
18
">
<
p
style
="
it
">
<
s
xml:space
="
preserve
">
<
pb
file
="
0026
"
n
="
26
"
rhead
="
ARCHIMEDIS
"/>
@e centro grauitatis ſolidorum demonstrauimus: </
s
>
<
s
xml:space
="
preserve
">erit magnitudi-
<
lb
/>
nis ex utriſque portionibus b n c, b g c conſtantis; </
s
>
<
s
xml:space
="
preserve
">hoc eſt portionis
<
lb
/>
in humido demerſa grauitatis centrum in linea n g, quæ ipſarum
<
lb
/>
ſphæræ portionum centra graui-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0026-01a
"
xlink:href
="
fig-0026-01
"/>
tatis coniungit. </
s
>
<
s
xml:space
="
preserve
">ſi enim fieri po-
<
lb
/>
teſt, ſit extra lineam n g, ut in
<
lb
/>
q: </
s
>
<
s
xml:space
="
preserve
">sîtq; </
s
>
<
s
xml:space
="
preserve
">portionis b n c centrum
<
lb
/>
grauitatis u; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ducatur u q.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
3
">
<
note
position
="
right
"
xlink:label
="
note-0025-03
"
xlink:href
="
note-0025-03a
"
xml:space
="
preserve
">C</
note
>
<
note
position
="
right
"
xlink:label
="
note-0025-04
"
xlink:href
="
note-0025-04a
"
xml:space
="
preserve
">29. primi</
note
>
<
note
position
="
right
"
xlink:label
="
note-0025-05
"
xlink:href
="
note-0025-05a
"
xml:space
="
preserve
">3. tertii.</
note
>
<
figure
xlink:label
="
fig-0026-01
"
xlink:href
="
fig-0026-01a
">
<
image
file
="
0026-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0026-01
"/>
</
figure
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">Quoniam igitur à portione in bu-
<
lb
/>
mido demerſa aufertur ſphæræ
<
lb
/>
portio b n c, non habens idem cen
<
lb
/>
trum grauitatis: </
s
>
<
s
xml:space
="
preserve
">erit ex octaua
<
lb
/>
primi libri Archimcdis de centro
<
lb
/>
grauitatis planorum, reliquæ por
<
lb
/>
tionis b g c centrum in linea u q
<
lb
/>
producta. </
s
>
<
s
xml:space
="
preserve
">quod fieri non potest; </
s
>
<
s
xml:space
="
preserve
">eſt enim in axe ipſius mg. </
s
>
<
s
xml:space
="
preserve
">sequi-
<
lb
/>
tur ergo ut portionis in humido demerſæ centrum grauitatis ſit in li
<
lb
/>
nean k. </
s
>
<
s
xml:space
="
preserve
">quod oſtendendum propoſuimus.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_Sed totius portionis grauitatis centrum eſt in linea ft, in-_
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0026-01a
"
xlink:href
="
note-0026-01
"/>
_ter_ k, _& </
s
>
<
s
xml:space
="
preserve
">f, quod ſit x.</
s
>
<
s
xml:space
="
preserve
">]_ Compleatur ſphæra, ut ſit portionis additæ
<
lb
/>
axis t y; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">centrú grauitatis z. </
s
>
<
s
xml:space
="
preserve
">Itaque quoniá à tota ſphæra, cuius
<
lb
/>
grauitatis cétrum eſt k, ut etiam in eodem libro demóſtrauimus, au
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0026-02a
"
xlink:href
="
note-0026-02
"/>
fertur portio e y h centrú grauitatis habens z: </
s
>
<
s
xml:space
="
preserve
">erit reliquæ portionis
<
lb
/>
e f h cétrú in linea z k producta. </
s
>
<
s
xml:space
="
preserve
">quare inter k. </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">f neceſſario cadet.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
4
">
<
note
position
="
left
"
xlink:label
="
note-0026-01
"
xlink:href
="
note-0026-01a
"
xml:space
="
preserve
">D</
note
>
<
note
position
="
left
"
xlink:label
="
note-0026-02
"
xlink:href
="
note-0026-02a
"
xml:space
="
preserve
">8. primi
<
lb
/>
Archime
<
lb
/>
dis.</
note
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Reliquæ ergo figuræ, quæ eſt extra humidum, centrum erit
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0026-03a
"
xlink:href
="
note-0026-03
"/>
in linea r x producta.</
s
>
<
s
xml:space
="
preserve
">] _Ex eadem octaua primi libri Archime-_
<
lb
/>
_dis de centro grauitatis planorum._</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
5
">
<
note
position
="
left
"
xlink:label
="
note-0026-03
"
xlink:href
="
note-0026-03a
"
xml:space
="
preserve
">E</
note
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_Feretur ergo grauitas, figuræ quidem quæ extra humi_-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0026-04a
"
xlink:href
="
note-0026-04
"/>
_dum per rectam s l deorſum; </
s
>
<
s
xml:space
="
preserve
">portionis autem, quæ in_
<
lb
/>
_humido ſurſum per rectam r l.</
s
>
<
s
xml:space
="
preserve
">]_ Ex antecedenti poſitio-
<
lb
/>
ne. </
s
>
<
s
xml:space
="
preserve
">magnitudo @enim, quæ in humido demerſa est, tanta ui per li-
<
lb
/>
neam r l ſurſum@fertur, quanta quæ extra humidum per li-
<
lb
/>
neam s l, deorſum: </
s
>
<
s
xml:space
="
preserve
">id quod ex propoſitione ſexta huius li-
<
lb
/>
briconſtare poteſt. </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quoniam feruntur per alias, atque alias li-</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>