Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
< >
page |< < (5) of 213 > >|
1215DE CENTRO GRAVIT. SOLID. quo ſcilicet ln, om conueniunt. Poſtremo in figura
a p l q b r m s c t n u d x o y centrum grauitatis trian
guli pay, &
trapezii ploy eſtin linea a z: trapeziorum
uero lqxo, q b d x centrum eſtin linea z k:
& trapeziorũ
b r u d, r m n u in k φ:
& denique trapezii m s t n; & triangu
li s c t in φ c.
quare magnitudinis ex his compoſitæ centrū
in linea a c conſiſtit.
Rurſus trianguli q b r, & trapezii q l
m r centrum eſt in linea b χ:
trapeziorum l p s m, p a c s,
a y t c, y o n t in linea χ φ:
trapeziiq; o x u n, & trianguli
x d u centrum in ψ d.
totius ergo magnitudinis centrum
eſtin linea b d.
ex quo ſequitur, centrum grauitatis figuræ
a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
b d commune, quæ omnia demonſtrare oportebat.
THE OREMA III. PROPOSITIO III.
Cuiuslibet portio-
77[Figure 77] nis circuli, &
ellipſis,
quæ dimidia non ſit
maior, centrum graui
tatis in portionis dia-
metro conſiſtit.
HOC eodem prorſus
modo demonſtrabitur,
quo in libro de centro gra
uitatis planorum ab Ar-
chimede demonſtratũ eſt,
in portione cõtenta recta
linea, &
rectanguli coni ſe
ctione grauitatis cẽtrum
eſſe in diametro portio-
nis.
Etita demonſtrari po
77[Handwritten note 7]

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index