Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
< >
page |< < of 213 > >|
FED. COMMANDINI
grauitatis eſſe punctum m. patetigitur totius dodecahe-
dri, centrum grauitatis idẽ eſſe, quod &
ſphæræ ipſum com
prehendentis centrum.
quæ quidem omnia demonſtraſſe
oportebat.

PROBLEMA VI. PROPOSITIO XX VIII.

Data qualibet portione conoidis rectangu
li, abſciſſa plano ad axem recto, uel non recto;
fie-
ri poteſt, ut portio ſolida inſcribatur, uel circum-
ſcribatur ex cylindris, uel cylindri portionibus,
æqualem habentibus altitudinem, ita ut recta li-
nea, quæ inter centrum grauitatis portionis, &

figuræ inſcriptæ, uel circumſcriptæ interiicitur,
ſit minor qualibet recta linea propoſita.
Sit portio conoidis rectanguli a b c, cuius axis b d, gra-
uitatisq;
centrum e: & fit g recta linea propoſita. quam ue
ro proportionem habet linea b e ad lineam g, eandem ha-
beat portio conoidis ad ſolidum h:
& circumſcribatur por
tioni figura, ſicuti dictum eſt, ita ut portiones reliquæ ſint
ſolido h minores:
cuius quidem figuræ centrum grauitatis
ſit punctum K.
Dico lineã k e minorem eſſe linea g propo-
ſita.
niſi enim ſit minor, uel æqualis, uel maior erit. & quo-
niam figura circumſcripta ad reliquas portiones maiorem
8. quĭnti.proportionem habet, quàm portio conoidis ad ſolidum h;
hoc eſt maiorem, quàm b c ad g: & b e ad g non minorem
habet proportionem, quàm ad _k_ e, propterea quod k e non
ponitur minor ipſa g:
habebit figura circumſcripta ad por
tiones reliquas maiorem proportionem quàm b e ad e k:

29. quĭnti
ex tradi-
tione Cã-
ſàni.
&
diuidendo portio conoidis ad reliquas portiones habe-
bit maiorem, quàm b K ad K e.
quare ſi fiat ut portio co-

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index