Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(13)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3469
"
xml:space
="
preserve
">
<
pb
o
="
13
"
file
="
0137
"
n
="
137
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
trianguli g h K, & </
s
>
<
s
xml:id
="
echoid-s3470
"
xml:space
="
preserve
">ipſius ρ τ axis medium.</
s
>
<
s
xml:id
="
echoid-s3471
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3472
"
xml:space
="
preserve
">Sit priſma a g, cuius oppoſita plana ſint quadrilatera
<
lb
/>
a b c d, e f g h: </
s
>
<
s
xml:id
="
echoid-s3473
"
xml:space
="
preserve
">ſecenturq; </
s
>
<
s
xml:id
="
echoid-s3474
"
xml:space
="
preserve
">a e, b f, c g, d h bifariam: </
s
>
<
s
xml:id
="
echoid-s3475
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3476
"
xml:space
="
preserve
">per di-
<
lb
/>
uiſiones planum ducatur; </
s
>
<
s
xml:id
="
echoid-s3477
"
xml:space
="
preserve
">quod ſectionem faciat quadrila-
<
lb
/>
terum _K_ l m n. </
s
>
<
s
xml:id
="
echoid-s3478
"
xml:space
="
preserve
">Deinde iuncta a c per lineas a c, a e ducatur
<
lb
/>
planum ſecãs priſma, quod ipſum diuidet in duo priſmata
<
lb
/>
triangulares baſes habentia a b c e f g, a d c e h g. </
s
>
<
s
xml:id
="
echoid-s3479
"
xml:space
="
preserve
">Sint autẽ
<
lb
/>
triangulorum a b c, e f g gra-
<
lb
/>
<
figure
xlink:label
="
fig-0137-01
"
xlink:href
="
fig-0137-01a
"
number
="
92
">
<
image
file
="
0137-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0137-01
"/>
</
figure
>
uitatis centra o p: </
s
>
<
s
xml:id
="
echoid-s3480
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3481
"
xml:space
="
preserve
">triangu-
<
lb
/>
lorum a d c, e h g centra q r:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3482
"
xml:space
="
preserve
">iunganturq; </
s
>
<
s
xml:id
="
echoid-s3483
"
xml:space
="
preserve
">o p, q r; </
s
>
<
s
xml:id
="
echoid-s3484
"
xml:space
="
preserve
">quæ pla-
<
lb
/>
no _k_ l m n occurrant in pun-
<
lb
/>
ctis s t. </
s
>
<
s
xml:id
="
echoid-s3485
"
xml:space
="
preserve
">erit ex iis, quæ demon
<
lb
/>
ſtrauimus, punctum s grauita
<
lb
/>
tis centrum trianguli k l m; </
s
>
<
s
xml:id
="
echoid-s3486
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3487
"
xml:space
="
preserve
">
<
lb
/>
ipſius priſmatis a b c e f g: </
s
>
<
s
xml:id
="
echoid-s3488
"
xml:space
="
preserve
">pun
<
lb
/>
ctum uero t centrum grauita
<
lb
/>
tis trianguli _K_ n m, & </
s
>
<
s
xml:id
="
echoid-s3489
"
xml:space
="
preserve
">priſma-
<
lb
/>
tis a d c, e h g. </
s
>
<
s
xml:id
="
echoid-s3490
"
xml:space
="
preserve
">iunctis igitur
<
lb
/>
o q, p r, s t, erit in linea o q cẽ
<
lb
/>
trum grauitatis quadrilateri
<
lb
/>
a b c d, quod ſit u: </
s
>
<
s
xml:id
="
echoid-s3491
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3492
"
xml:space
="
preserve
">in linea
<
lb
/>
p r cẽtrum quadrilateri e f g h
<
lb
/>
ſit autem x. </
s
>
<
s
xml:id
="
echoid-s3493
"
xml:space
="
preserve
">deniqueiungatur
<
lb
/>
u x, quæ ſecet lineam ſ t in y. </
s
>
<
s
xml:id
="
echoid-s3494
"
xml:space
="
preserve
">ſe
<
lb
/>
cabit enim cum ſint in eodem
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0137-01
"
xlink:href
="
note-0137-01a
"
xml:space
="
preserve
">5. huius.</
note
>
plano: </
s
>
<
s
xml:id
="
echoid-s3495
"
xml:space
="
preserve
">atq; </
s
>
<
s
xml:id
="
echoid-s3496
"
xml:space
="
preserve
">erit y grauitatis centrum quadril ateri _K_ lm n.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3497
"
xml:space
="
preserve
">Dico idem punctum y centrum quoque gra uitatis eſſe to-
<
lb
/>
tius priſmatis. </
s
>
<
s
xml:id
="
echoid-s3498
"
xml:space
="
preserve
">Quoniam enim quadri lateri k lm n graui-
<
lb
/>
tatis centrum eſt y: </
s
>
<
s
xml:id
="
echoid-s3499
"
xml:space
="
preserve
">linea s y ad y t eandem proportionem
<
lb
/>
habebit, quam triangulum k n m ad triangulum k lm, ex 8
<
lb
/>
Archimedis de centro grauitatis planorum. </
s
>
<
s
xml:id
="
echoid-s3500
"
xml:space
="
preserve
">Vtautem triã
<
lb
/>
gulum k n m ad ipſum k l m, hoc eſt ut triangulum a d c ad
<
lb
/>
triangulum a b c, æqualia enim ſunt, ita priſina a d c e h </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>