Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb file="0190" n="190" rhead="FED. COMMANDINI"/>
            ctiones circuli ex prima propofitione ſphæricorum Theo
              <lb/>
            doſii: </s>
            <s xml:space="preserve">unus quidem circa triangulum a b c deſcriptus: </s>
            <s xml:space="preserve">al-
              <lb/>
            ter uero circa d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam triangula a b c, d e f æqua-
              <lb/>
            lia ſunt, & </s>
            <s xml:space="preserve">ſimilia; </s>
            <s xml:space="preserve">erunt ex prima, & </s>
            <s xml:space="preserve">ſecunda propoſitione
              <lb/>
            duodecimi libri elementorum, circuli quoque inter ſe ſe
              <lb/>
            æquales. </s>
            <s xml:space="preserve">poſtremo a centro g ad circulum a b c perpendi
              <lb/>
            cularis ducatur g h; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">alia perpendicularis ducatur ad cir
              <lb/>
            culum d e f, quæ ſit g _k_; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur a h, d k. </s>
            <s xml:space="preserve">perſpicuum
              <lb/>
            eſt ex corollario primæ ſphæricorum Theodoſii, punctum
              <lb/>
            h centrum eſſe circuli a b c, & </s>
            <s xml:space="preserve">k centrum circuli d e f. </s>
            <s xml:space="preserve">Quo
              <lb/>
            niam igitur triangulorum g a h, g d K latus a g eſt æquale la
              <lb/>
            teri g d; </s>
            <s xml:space="preserve">ſunt enim à centro ſphæræ ad ſuperficiem: </s>
            <s xml:space="preserve">atque
              <lb/>
            eſt a h æquale d k: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ex ſexta propoſitione libri primi ſphæ
              <lb/>
            ricorum Theodoſii g h ipſi g K: </s>
            <s xml:space="preserve">triangulum g a h æquale
              <lb/>
            erit, & </s>
            <s xml:space="preserve">ſimile g d k triangulo: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">angulus a g h æqualis an-
              <lb/>
            gulo d g _K_. </s>
            <s xml:space="preserve">ſed anguli a g h, h g d ſunt æquales duobus re-
              <lb/>
              <anchor type="note" xlink:label="note-0190-01a" xlink:href="note-0190-01"/>
            ctis. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">ipſi h g d, d g k duobus rectis æquales erunt.
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcirco h g, g _K_ una, atque eadem erit linea. </s>
            <s xml:space="preserve">cum autem
              <lb/>
              <anchor type="note" xlink:label="note-0190-02a" xlink:href="note-0190-02"/>
            h ſit centrũ circuli, & </s>
            <s xml:space="preserve">tri-
              <lb/>
              <anchor type="figure" xlink:label="fig-0190-01a" xlink:href="fig-0190-01"/>
            anguli a b c grauitatis cen
              <lb/>
            trũ probabitur ex iis, quæ
              <lb/>
            in prima propoſitione hu
              <lb/>
            ius tradita funt. </s>
            <s xml:space="preserve">quare g h
              <lb/>
            erit pyramidis a b c g axis.
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ob eandem cauſſam g k
              <lb/>
            axis pyramidis d e f g. </s>
            <s xml:space="preserve">Ita-
              <lb/>
            que centrum grauitatis py
              <lb/>
            ramidis a b c g ſit púctum
              <lb/>
            l, & </s>
            <s xml:space="preserve">pyramidis d e f g ſit m. </s>
            <s xml:space="preserve">
              <lb/>
            Similiter ut ſupra demon-
              <lb/>
            ſtrabimus m g, g linter ſe æquales eſſe, & </s>
            <s xml:space="preserve">punctum g graui
              <lb/>
            tatis centrum magnitudinis, quæ ex utriſque pyramidibus
              <lb/>
            conſtat. </s>
            <s xml:space="preserve">eodem modo demonſtrabitur, quarumcunque
              <lb/>
            duarum pyramidum, quæ opponuntur, grauitatis centrũ</s>
          </p>
        </div>
      </text>
    </echo>