Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
< >
page |< < (40) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb o="40" file="0191" n="191" rhead="DE CENTRO GRAVIT. SOLID."/>
            eſſe pun ctum g. </s>
            <s xml:space="preserve">Sequitur ergo uticoſahedri centrum gra
              <lb/>
            uitatis fit idem, quodipſius ſphæræ centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="4">
            <note position="left" xlink:label="note-0190-01" xlink:href="note-0190-01a" xml:space="preserve">13. primi</note>
            <note position="left" xlink:label="note-0190-02" xlink:href="note-0190-02a" xml:space="preserve">14. primi</note>
            <figure xlink:label="fig-0190-01" xlink:href="fig-0190-01a">
              <image file="0190-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0190-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit dodecahedrum a ſin ſphæra deſignatum, ſitque ſphæ
              <lb/>
            ræ centrum m. </s>
            <s xml:space="preserve">Dico m centrum eſſe grauitatis ipſius do-
              <lb/>
            decahedri. </s>
            <s xml:space="preserve">Sit enim pentagonum a b c d e una ex duode-
              <lb/>
            cim baſibus ſolidi a f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta a m producatur ad ſphæræ
              <lb/>
            ſuperficiem. </s>
            <s xml:space="preserve">cadetin angulum ipſi a oppoſitum; </s>
            <s xml:space="preserve">quod col-
              <lb/>
            ligitur ex decima ſeptima propoſitione tertiidecimilibri
              <lb/>
            elementorum. </s>
            <s xml:space="preserve">cadat in f. </s>
            <s xml:space="preserve">at ſi ab aliis angulis b c d e per cẽ
              <lb/>
            trum itidem lineæ ducantur ad ſuperficiem ſphæræ in pun
              <lb/>
            cta g h k l; </s>
            <s xml:space="preserve">cadent hæ in alios angulos baſis, quæ ipſi a b c d
              <lb/>
            baſi opponitur. </s>
            <s xml:space="preserve">tranſeant ergo per pentagona a b c d e,
              <lb/>
            f g h K l plana ſphæram ſecantia, quæ facient ſectiones cir-
              <lb/>
            culos æquales inter ſe ſe poſtea ducantur ex centro ſphæræ
              <lb/>
            m perpen diculares ad pla-
              <lb/>
              <anchor type="figure" xlink:label="fig-0191-01a" xlink:href="fig-0191-01"/>
            na dictorum circulorũ; </s>
            <s xml:space="preserve">ad
              <lb/>
            circulum quidem a b c d e
              <lb/>
            perpendicularis m n: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ad
              <lb/>
            circulum f g h K l ipſa m o,
              <lb/>
              <anchor type="note" xlink:label="note-0191-01a" xlink:href="note-0191-01"/>
            erunt puncta n o circulorũ
              <lb/>
            centra: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">lineæ m n, m o in
              <lb/>
            ter ſe æquales: </s>
            <s xml:space="preserve">quòd circu-
              <lb/>
            li æquales ſint. </s>
            <s xml:space="preserve">Eodem mo
              <lb/>
              <anchor type="note" xlink:label="note-0191-02a" xlink:href="note-0191-02"/>
            do, quo ſupra, demonſtrabi
              <lb/>
            mus lineas m n, m o in unã
              <lb/>
            atque eandem lineam con-
              <lb/>
            uenire. </s>
            <s xml:space="preserve">ergo cum puncta n o ſint centra circulorum, con-
              <lb/>
            ſtat ex prima huius & </s>
            <s xml:space="preserve">pentagonorũ grauitatis eſſe centra:
              <lb/>
            </s>
            <s xml:space="preserve">idcircoq; </s>
            <s xml:space="preserve">m n, m o pyramidum a b c d e m, ſ g h _K_ l m axes. </s>
            <s xml:space="preserve">
              <lb/>
            ponatur a b c d e m pyramidis grauitatis centrum p: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">py
              <lb/>
            ramidis f g h
              <emph style="sc">K</emph>
            l m ipſum q centrum. </s>
            <s xml:space="preserve">erunt p m, m q æqua-
              <lb/>
            les, & </s>
            <s xml:space="preserve">punctum m grauitatis centrum magnitudinis, quæ
              <lb/>
            ex ipſis pyramidibus conſtat. </s>
            <s xml:space="preserve">eodẽ modo probabitur qua-
              <lb/>
            rumlibet pyramidum, quæ è regione opponuntur, centrũ</s>
          </p>
        </div>
      </text>
    </echo>