Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
< >
page |< < of 213 > >|
ARCHIMEDIS
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="17">
          <p>
            <s xml:space="preserve">
              <pb file="0024" n="24" rhead="ARCHIMEDIS"/>
            in linea ft. </s>
            <s xml:space="preserve">nam ſit primum figura maior dimidia ſphære:
              <lb/>
            </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">in dimidia ſphæra ſphæræ centrum t; </s>
            <s xml:space="preserve">in minori por-
              <lb/>
            tioneſit centrum p; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in maiori _k_: </s>
            <s xml:space="preserve">per _k_ uero, & </s>
            <s xml:space="preserve">terræ cen
              <lb/>
            trum l ducatur _k_ l ſecans circunferentiam e f h in pun-
              <lb/>
            cto n. </s>
            <s xml:space="preserve">Quoniam igitur unaquæque ſphæræportio axem
              <lb/>
              <anchor type="note" xlink:label="note-0024-01a" xlink:href="note-0024-01"/>
            habet in linea, quæ à cẽtro ſphæræ ad cius baſim perpen-
              <lb/>
            dicularis ducitur: </s>
            <s xml:space="preserve">habetq; </s>
            <s xml:space="preserve">in axe grauitatis centrum:
              <lb/>
            </s>
            <s xml:space="preserve">portionis in humido demerſæ, quæ ex duabus ſphæræ
              <lb/>
            portionibus conſtat, axis erit in perpendiculari per _k_ du-
              <lb/>
            cta. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcirco centrum grauitatis ipſius erit in linea n _k_,
              <lb/>
            quod ſit r. </s>
            <s xml:space="preserve">ſed totius portionis grauitatis centrum eſt in li
              <lb/>
              <anchor type="note" xlink:label="note-0024-02a" xlink:href="note-0024-02"/>
            nea f t inter _k_, & </s>
            <s xml:space="preserve">f, quod ſit x. </s>
            <s xml:space="preserve">reliquæ ergo figuræ, quæ eſt
              <lb/>
              <anchor type="note" xlink:label="note-0024-03a" xlink:href="note-0024-03"/>
            extra humidum, centrum erit in linea r x producta ad par
              <lb/>
            tes x; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">aſſumpta ex ea, linea quadam, quæ ad r x eandem
              <lb/>
            proportionem habeat, quam grauitas portionis in humi-
              <lb/>
            do demerſæ habet ad grauitatem figuræ, quæ eſt extra hu-
              <lb/>
            midum. </s>
            <s xml:space="preserve">Sit autem s centrum dictæ figuræ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per s duca-
              <lb/>
            tur perpendicularis l s. </s>
            <s xml:space="preserve">Feretur ergo grauitas figuræ qui-
              <lb/>
              <anchor type="note" xlink:label="note-0024-04a" xlink:href="note-0024-04"/>
            dem, quæ extra humidum per rectam s l deorſum; </s>
            <s xml:space="preserve">portio
              <lb/>
            nis autem, quæ in humido, ſurſum per rectam r l. </s>
            <s xml:space="preserve">quare
              <lb/>
            non manebit figura: </s>
            <s xml:space="preserve">ſed partes eius, quæ ſunt ad e, deor-
              <lb/>
            ſum; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quæ ad h ſurſum ſerẽtur: </s>
            <s xml:space="preserve">idq; </s>
            <s xml:space="preserve">cõtinenter fiet, quoad
              <lb/>
            ſ t ſit ſecundum perpendicularem. </s>
            <s xml:space="preserve">Eodem modo in aliis
              <lb/>
            portionibus idem demonſtrabitur.</s>
            <s xml:space="preserve">]</s>
          </p>
          <div type="float" level="2" n="2">
            <note position="right" xlink:label="note-0023-03" xlink:href="note-0023-03a" xml:space="preserve">Suppleta
              <lb/>
            a Federi-
              <lb/>
            co Cõm.</note>
            <figure xlink:label="fig-0023-01" xlink:href="fig-0023-01a">
              <image file="0023-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0023-01"/>
            </figure>
            <note position="left" xlink:label="note-0024-01" xlink:href="note-0024-01a" xml:space="preserve">C</note>
            <note position="left" xlink:label="note-0024-02" xlink:href="note-0024-02a" xml:space="preserve">D</note>
            <note position="left" xlink:label="note-0024-03" xlink:href="note-0024-03a" xml:space="preserve">E</note>
            <note position="left" xlink:label="note-0024-04" xlink:href="note-0024-04a" xml:space="preserve">F</note>
          </div>
          <figure>
            <image file="0024-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0024-01"/>
          </figure>
        </div>
      </text>
    </echo>