Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
< >
page |< < of 213 > >|
ARCHIMEDIS
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="42">
          <pb file="0074" n="74" rhead="ARCHIMEDIS"/>
        </div>
        <div type="section" level="1" n="43">
          <head xml:space="preserve">LEMMA II.</head>
          <p style="it">
            <s xml:space="preserve">Sint duæ portionis ſimiles, contentæ rectis lineis, & </s>
            <s xml:space="preserve">
              <lb/>
            rectangulorum conorum ſectionibus; </s>
            <s xml:space="preserve">a b c quidem ma-
              <lb/>
            ior, cuius diameter b d; </s>
            <s xml:space="preserve">e f c uero minor, cuius diameter
              <lb/>
            fg: </s>
            <s xml:space="preserve">aptenturq; </s>
            <s xml:space="preserve">inter ſeſe, ita ut maior minorem includat
              <lb/>
            & </s>
            <s xml:space="preserve">ſint earum baſes a c, e c in eadem recta linea, ut idẽ
              <lb/>
            punctum c ſit utriuſque terminus: </s>
            <s xml:space="preserve">ſumatur deinde in ſe
              <lb/>
            ctione a b c quodlibet punctum b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungatur h c. </s>
            <s xml:space="preserve">Di
              <lb/>
            co lineam h c ad partem ſui ipſius, quæ inter c, & </s>
            <s xml:space="preserve">ſe-
              <lb/>
            ctionem e f c interiicitur, eam proportionẽ habere, quam
              <lb/>
            habet a c ad c e.</s>
            <s xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:space="preserve">_
              <emph style="sc">Dvcatvr</emph>
            _ b c, quæ tranſibit per f. </s>
            <s xml:space="preserve">quoniam enim portiones
              <lb/>
            ſimiles ſunt, diametri cú baſibus æquales continent angulos. </s>
            <s xml:space="preserve">quare
              <lb/>
            æquidiſtant inter ſe ſe b d, f g: </s>
            <s xml:space="preserve">éſtq; </s>
            <s xml:space="preserve">b d ad a c, ut f g ad e c:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">permu-
              <lb/>
              <anchor type="figure" xlink:label="fig-0074-01a" xlink:href="fig-0074-01"/>
            tando b d ad
              <lb/>
            f g, ut a c ad
              <lb/>
            c e: </s>
            <s xml:space="preserve">hoc eſt
              <lb/>
              <anchor type="note" xlink:label="note-0074-01a" xlink:href="note-0074-01"/>
            ut earum di-
              <lb/>
            midiæ d c ad
              <lb/>
            c g. </s>
            <s xml:space="preserve">ergo ex
              <lb/>
            antecedēti lé
              <lb/>
            mate ſequi-
              <lb/>
            tur lineá b c
              <lb/>
            per punctum
              <lb/>
            f tranſire.
              <lb/>
            </s>
            <s xml:space="preserve">Ducatur præ
              <lb/>
            terea à puncto h ad diametrum b d linea h K, æquidiſtans baſi
              <lb/>
            a c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta k c, quæ diametrum f g ſecet in l; </s>
            <s xml:space="preserve">per l ducatur</s>
          </p>
        </div>
      </text>
    </echo>