Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < of 213 > >|
FED. COMMANDINI
æqualibus baſibus, quorum axes cum baſibus æquales an
gulos faciant.
Dico ſolidum a b adſolidũ c d ita eſſe, ut axis
e f ad axem g h:
nam ſi axes ad planum baſis recti ſint, il-
lud perſpicue conſtat:
quoniam eadem linea, & axem & ſoli
di altitudinem determinabit.
Si uero ſintinclinati, à pun-
ctis e g ad ſubiectum planum perpendiculares ducantur
e k, g l:
& iungantur f_k_, h l. rurſus quoniam axes cum ba
ſibus æquales faciunt angulos, eodem modo demonſtrabi
tur, triangulum e f K triangulo g h l ſimile eſſe:
& e k ad g l,
ut e f ad g h.
Solidum autem a b ad ſolidum c d eſt, ut
e K ad g l.
ergo & ut axis e f ad axem g h. quæ omnia de
monſtrare oportebat.
Ex iis quæ demonſtrata ſunt, facile conſtare
poteſt, priſmata omnia &
pyramides, quæ trian-
gulares baſes habent, ſiue in eiſdem, ſiue in æqua
libus baſibus conſtituantur, eandem proportio-
15. quintinem habere, quam altitudines:
& ſi axes cum ba
ſibus æquales angulos contineant, ſimiliter ean-
dem, quam axes, habere proportionem:
ſunt
28. unde-
cimi.
enim ſolida parallelepipeda priſmatum triangula
res baſes habentiũ dupla;
& pyramidum ſextupla.
7. duode-
cimi.

THE OREMA XVI. PROPOSITIO XX.

Priſmata omnia & pyramides, quæ in eiſdem,
uel æqualibus baſibus conſtituuntur, eam inter
ſe proportionem habent, quam altitudines:
& ſi
axes cum baſibus faciant angulos æquales, eam
etiam, quam axes habent proportionem.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index