Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (37) of 213 > >|
7337DE IIS QVAE VEH. IN AQVA.
Cum ergo tres portiones ſint a p o i, a ei, atd, con-
11M tentæ rectis lineis, &
rectãgulorum conorum ſectionibus;
rectæq; , ſimiles, & inæquales, quæ contingunt ſe ſe ſuper
unam quamque baſim.
] _Poſt ea uerba, ſuper unamquanque_
_baſim, in trans latione aliqua deſiderari uidentur.
Ad borum autem_
_demonſtrationem non nulla præmittere oportet, quæ etiam ad alia,_
_quæ ſequuntur, neceſſaria erunt._
LEMMA I.
Sit recta linea a b, quam ſecent duæ lineæ inter ſeſe
æquidiſtantes a c, d e, ita ut quam proportionem ba-
bet a b ad b d, eandern haheat a c ad de.
Dico li-
neam, quæ c b puncta coniungit, etiam per ipſum e
tr anſire.
SI enim fieri poteſt, non tranſeat pere, ſed nel ſupra, uel infra.
tranſeat primum infra, ut per f. erunt triangula a b c, d b f inter ſe
ſimilia.
quare ut a b ad b d, ita a c ad d f. ſed ut a b ad bd, ita
224. ſexti. erat a c ad d e.
ergo d f ipſi d e æqualis erit, uidelicet pars to-
339. quinti. ti, quod eſt
45[Figure 45] cbſurdum.
Idem ab-
ſurdum ſe
quetur, ſi
linea c b
ſupra e pú
ctum tran
ſire pona-
tur.
quare
c b etiam
per e ne-
ceſſario tranſibit.
quod oportebat demonſtrare.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index