Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div192
"
type
="
section
"
level
="
1
"
n
="
64
">
<
p
>
<
s
xml:id
="
echoid-s2960
"
xml:space
="
preserve
">
<
pb
file
="
0118
"
n
="
118
"
rhead
="
FED. COMMANDINI
"/>
do in reliquis figuris æquilateris, & </
s
>
<
s
xml:id
="
echoid-s2961
"
xml:space
="
preserve
">æquiangulis, quæ in cir-
<
lb
/>
culo deſcribuntur, probabimus cẽtrum grauitatis earum,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s2962
"
xml:space
="
preserve
">centrum circuli idem eſſe. </
s
>
<
s
xml:id
="
echoid-s2963
"
xml:space
="
preserve
">quod quidem demonſtrare
<
lb
/>
oportebat.</
s
>
<
s
xml:id
="
echoid-s2964
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2965
"
xml:space
="
preserve
">Ex quibus apparet cuiuslibet figuræ rectilineæ
<
lb
/>
in circulo plane deſcriptæ centrum grauitatis idẽ
<
lb
/>
eſſe, quod & </
s
>
<
s
xml:id
="
echoid-s2966
"
xml:space
="
preserve
">circuli centrum.</
s
>
<
s
xml:id
="
echoid-s2967
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2968
"
xml:space
="
preserve
">Figuram in circulo plane deſcriptam appella-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0118-01
"
xlink:href
="
note-0118-01a
"
xml:space
="
preserve
">γνωρ@ μω@</
note
>
mus, cuiuſmodi eſt ea, quæ in duodecimo elemen
<
lb
/>
torum libro, propoſitione ſecunda deſcribitur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2969
"
xml:space
="
preserve
">ex æqualibus enim lateribus, & </
s
>
<
s
xml:id
="
echoid-s2970
"
xml:space
="
preserve
">angulis conſtare
<
lb
/>
perſpicuum eſt.</
s
>
<
s
xml:id
="
echoid-s2971
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div199
"
type
="
section
"
level
="
1
"
n
="
65
">
<
head
xml:id
="
echoid-head72
"
xml:space
="
preserve
">THEOREMA II. PROPOSITIO II.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2972
"
xml:space
="
preserve
">Omnis figuræ rectilineæ in ellipſi plane deſcri-
<
lb
/>
ptæ centrum grauitatis eſt idem, quod ellipſis
<
lb
/>
centrum.</
s
>
<
s
xml:id
="
echoid-s2973
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2974
"
xml:space
="
preserve
">Quo modo figura rectilinea in ellipſi plane deſcribatur,
<
lb
/>
docuimus in commentarijs in quintam propoſitionem li-
<
lb
/>
bri Archimedis de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s2975
"
xml:space
="
preserve
">ſphæroidibus.</
s
>
<
s
xml:id
="
echoid-s2976
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2977
"
xml:space
="
preserve
">Sit ellipſis a b c d, cuius maior axis a c, minor b d: </
s
>
<
s
xml:id
="
echoid-s2978
"
xml:space
="
preserve
">iun-
<
lb
/>
ganturq́; </
s
>
<
s
xml:id
="
echoid-s2979
"
xml:space
="
preserve
">a b, b c, c d, d a: </
s
>
<
s
xml:id
="
echoid-s2980
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2981
"
xml:space
="
preserve
">bifariam diuidantur in pun-
<
lb
/>
ctis e f g h. </
s
>
<
s
xml:id
="
echoid-s2982
"
xml:space
="
preserve
">à centro autem, quod ſit k ductæ lineæ k e, k f,
<
lb
/>
k g, k h uſque ad ſectionem in puncta l m n o protrahan-
<
lb
/>
tur: </
s
>
<
s
xml:id
="
echoid-s2983
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2984
"
xml:space
="
preserve
">iungantur l m, m n, n o, o l, ita ut a c ſecet li-
<
lb
/>
neas l o, m n, in z φ punctis, & </
s
>
<
s
xml:id
="
echoid-s2985
"
xml:space
="
preserve
">b d ſecet l m, o n in χ ψ.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2986
"
xml:space
="
preserve
">erunt l k, k n linea una, itemq́ue linea unaipſæ m k, k o: </
s
>
<
s
xml:id
="
echoid-s2987
"
xml:space
="
preserve
">
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s2988
"
xml:space
="
preserve
">lineæ b a, c d æquidiſtabunt lineæ m o: </
s
>
<
s
xml:id
="
echoid-s2989
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2990
"
xml:space
="
preserve
">b c, a d ipſi
<
lb
/>
l n. </
s
>
<
s
xml:id
="
echoid-s2991
"
xml:space
="
preserve
">rurſus l o, m n axi b d æquidiſtabunt: </
s
>
<
s
xml:id
="
echoid-s2992
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2993
"
xml:space
="
preserve
">l </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>