Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(4)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div199
"
type
="
section
"
level
="
1
"
n
="
65
">
<
p
>
<
s
xml:id
="
echoid-s2993
"
xml:space
="
preserve
">
<
pb
o
="
4
"
file
="
0119
"
n
="
119
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
o n ipſi a c. </
s
>
<
s
xml:id
="
echoid-s2994
"
xml:space
="
preserve
">Quoniam enim triangulorum a b k, a d k, latus
<
lb
/>
b k eſt æquale lateri k d, & </
s
>
<
s
xml:id
="
echoid-s2995
"
xml:space
="
preserve
">a k utrique commune; </
s
>
<
s
xml:id
="
echoid-s2996
"
xml:space
="
preserve
">anguliq́;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2997
"
xml:space
="
preserve
">ad k recti baſis a b baſi a d; </
s
>
<
s
xml:id
="
echoid-s2998
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2999
"
xml:space
="
preserve
">reliqui anguli reliquis an-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0119-01
"
xlink:href
="
note-0119-01a
"
xml:space
="
preserve
">8. primi</
note
>
gulis æquales erunt. </
s
>
<
s
xml:id
="
echoid-s3000
"
xml:space
="
preserve
">eadem quoqueratione oſtendetur b c
<
lb
/>
æqualis c d; </
s
>
<
s
xml:id
="
echoid-s3001
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3002
"
xml:space
="
preserve
">a b ipſi
<
lb
/>
<
figure
xlink:label
="
fig-0119-01
"
xlink:href
="
fig-0119-01a
"
number
="
75
">
<
image
file
="
0119-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0119-01
"/>
</
figure
>
b c. </
s
>
<
s
xml:id
="
echoid-s3003
"
xml:space
="
preserve
">quare omnes a b,
<
lb
/>
b c, c d, d a ſunt æqua-
<
lb
/>
les. </
s
>
<
s
xml:id
="
echoid-s3004
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3005
"
xml:space
="
preserve
">quoniam anguli
<
lb
/>
ad a æquales ſunt angu
<
lb
/>
lis ad c; </
s
>
<
s
xml:id
="
echoid-s3006
"
xml:space
="
preserve
">erunt anguli b
<
lb
/>
a c, a c d coalterni inter
<
lb
/>
ſe æquales; </
s
>
<
s
xml:id
="
echoid-s3007
"
xml:space
="
preserve
">itemq́; </
s
>
<
s
xml:id
="
echoid-s3008
"
xml:space
="
preserve
">d a c,
<
lb
/>
a c b. </
s
>
<
s
xml:id
="
echoid-s3009
"
xml:space
="
preserve
">ergo c d ipſi b a;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3010
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3011
"
xml:space
="
preserve
">a d ipſi b c æquidi-
<
lb
/>
ſtat. </
s
>
<
s
xml:id
="
echoid-s3012
"
xml:space
="
preserve
">Atuero cum lineæ
<
lb
/>
a b, c d inter ſe æquidi-
<
lb
/>
ſtantes bifariam ſecen-
<
lb
/>
tur in punctis e g; </
s
>
<
s
xml:id
="
echoid-s3013
"
xml:space
="
preserve
">erit li
<
lb
/>
nea l e k g n diameter ſe
<
lb
/>
ctionis, & </
s
>
<
s
xml:id
="
echoid-s3014
"
xml:space
="
preserve
">linea una, ex
<
lb
/>
demonſtratis in uigeſi-
<
lb
/>
ma octaua ſecundi coni
<
lb
/>
corum. </
s
>
<
s
xml:id
="
echoid-s3015
"
xml:space
="
preserve
">Et eadem ratione linea una m f k h o. </
s
>
<
s
xml:id
="
echoid-s3016
"
xml:space
="
preserve
">Sunt autẽ a d,
<
lb
/>
b c inter ſe ſe æquales, & </
s
>
<
s
xml:id
="
echoid-s3017
"
xml:space
="
preserve
">æquidiſtantes. </
s
>
<
s
xml:id
="
echoid-s3018
"
xml:space
="
preserve
">quare & </
s
>
<
s
xml:id
="
echoid-s3019
"
xml:space
="
preserve
">earum di-
<
lb
/>
midiæ a h, b f; </
s
>
<
s
xml:id
="
echoid-s3020
"
xml:space
="
preserve
">itemq́; </
s
>
<
s
xml:id
="
echoid-s3021
"
xml:space
="
preserve
">h d, f e; </
s
>
<
s
xml:id
="
echoid-s3022
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3023
"
xml:space
="
preserve
">quæ ipſas coniunguntrectæ
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0119-02
"
xlink:href
="
note-0119-02a
"
xml:space
="
preserve
">33. primit</
note
>
lineæ æquales, & </
s
>
<
s
xml:id
="
echoid-s3024
"
xml:space
="
preserve
">æquidiſtantes erunt. </
s
>
<
s
xml:id
="
echoid-s3025
"
xml:space
="
preserve
">æquidiſtãt igitur b a,
<
lb
/>
c d diametro m o: </
s
>
<
s
xml:id
="
echoid-s3026
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3027
"
xml:space
="
preserve
">pariter a d, b c ipſi l n æquidiſtare o-
<
lb
/>
ſtendemus. </
s
>
<
s
xml:id
="
echoid-s3028
"
xml:space
="
preserve
">Si igitur manẽte diametro a c intelligatur a b c
<
lb
/>
portio ellipſis ad portionem a d c moueri, cum primum b
<
lb
/>
applicuerit ad d, cõgruet tota portio toti portioni, lineaq́;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3029
"
xml:space
="
preserve
">b a lineæ a d; </
s
>
<
s
xml:id
="
echoid-s3030
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3031
"
xml:space
="
preserve
">b c ipſi c d congruet: </
s
>
<
s
xml:id
="
echoid-s3032
"
xml:space
="
preserve
">punctum uero e ca-
<
lb
/>
det in h; </
s
>
<
s
xml:id
="
echoid-s3033
"
xml:space
="
preserve
">f in g: </
s
>
<
s
xml:id
="
echoid-s3034
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3035
"
xml:space
="
preserve
">linea k e in lineam k h: </
s
>
<
s
xml:id
="
echoid-s3036
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3037
"
xml:space
="
preserve
">k f in k g. </
s
>
<
s
xml:id
="
echoid-s3038
"
xml:space
="
preserve
">qua
<
lb
/>
re & </
s
>
<
s
xml:id
="
echoid-s3039
"
xml:space
="
preserve
">el in h o, et fm in g n. </
s
>
<
s
xml:id
="
echoid-s3040
"
xml:space
="
preserve
">Atipſa lz in z o; </
s
>
<
s
xml:id
="
echoid-s3041
"
xml:space
="
preserve
">et m φ in φ n
<
lb
/>
cadet. </
s
>
<
s
xml:id
="
echoid-s3042
"
xml:space
="
preserve
">congruet igitur triangulum l k z triangulo o k z: </
s
>
<
s
xml:id
="
echoid-s3043
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>