Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(18)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div227
"
type
="
section
"
level
="
1
"
n
="
76
">
<
p
>
<
s
xml:id
="
echoid-s3729
"
xml:space
="
preserve
">
<
pb
o
="
18
"
file
="
0147
"
n
="
147
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
tione quarta Apollonius demonſtrauit. </
s
>
<
s
xml:id
="
echoid-s3730
"
xml:space
="
preserve
">Si igitur à ſingu-
<
lb
/>
lis horum circulorum, duo cylindri fiant; </
s
>
<
s
xml:id
="
echoid-s3731
"
xml:space
="
preserve
">unus quidem ad
<
lb
/>
baſis partes; </
s
>
<
s
xml:id
="
echoid-s3732
"
xml:space
="
preserve
">alter ad partes uerticis: </
s
>
<
s
xml:id
="
echoid-s3733
"
xml:space
="
preserve
">inſcripta erit in co-
<
lb
/>
no ſolida quædam figura, & </
s
>
<
s
xml:id
="
echoid-s3734
"
xml:space
="
preserve
">altera circumſcripta ex cylin-
<
lb
/>
dris æqualem altitudinem habentibus conſtans; </
s
>
<
s
xml:id
="
echoid-s3735
"
xml:space
="
preserve
">quorum
<
lb
/>
unuſquiſque, qui in
<
lb
/>
<
figure
xlink:label
="
fig-0147-01
"
xlink:href
="
fig-0147-01a
"
number
="
100
">
<
image
file
="
0147-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0147-01
"/>
</
figure
>
figura inſcripta con-
<
lb
/>
tinetur æqualis eſt ei,
<
lb
/>
qui ab eodem fit cir-
<
lb
/>
culo in figura circũ-
<
lb
/>
ſcripta. </
s
>
<
s
xml:id
="
echoid-s3736
"
xml:space
="
preserve
">Itaque cylin
<
lb
/>
drus o p æqualis eſt
<
lb
/>
cylindro o n; </
s
>
<
s
xml:id
="
echoid-s3737
"
xml:space
="
preserve
">cylin-
<
lb
/>
drus r s cylĩdro r q;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3738
"
xml:space
="
preserve
">cylindrus u x cylin-
<
lb
/>
dro u t cſt æqualis; </
s
>
<
s
xml:id
="
echoid-s3739
"
xml:space
="
preserve
">
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3740
"
xml:space
="
preserve
">alii aliis ſimiliter. </
s
>
<
s
xml:id
="
echoid-s3741
"
xml:space
="
preserve
">
<
lb
/>
quare conſtat circũ-
<
lb
/>
ſcriptam figuram ſu-
<
lb
/>
perare inſcriptam cy
<
lb
/>
lindro, cuius baſis eſt
<
lb
/>
circulus circa diametrum a c, & </
s
>
<
s
xml:id
="
echoid-s3742
"
xml:space
="
preserve
">axis d e. </
s
>
<
s
xml:id
="
echoid-s3743
"
xml:space
="
preserve
">atque hic eſtmi-
<
lb
/>
nor ſolida magnitudine propoſita.</
s
>
<
s
xml:id
="
echoid-s3744
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div229
"
type
="
section
"
level
="
1
"
n
="
77
">
<
head
xml:id
="
echoid-head84
"
xml:space
="
preserve
">PROBLEMA III. PROPOSITIO XII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3745
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Data</
emph
>
coni portione, poteſt ſolida quædam
<
lb
/>
figura inſcribi, & </
s
>
<
s
xml:id
="
echoid-s3746
"
xml:space
="
preserve
">altera circumſcribi ex cylindri
<
lb
/>
portionibus æqualem altitudinem habentibus;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3747
"
xml:space
="
preserve
">ita ut circumſcripta inſcriptam exuperet, magni
<
lb
/>
tudine, quæ minor ſit ſolida magnitudine pro-
<
lb
/>
poſita.</
s
>
<
s
xml:id
="
echoid-s3748
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>