Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (27) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="86">
          <p>
            <s xml:space="preserve">
              <pb o="27" file="0165" n="165" rhead="DE CENTRO GRAVIT. SOLID."/>
            proportionem habet, quam baſis a b c d ad baſim g h k l:
              <lb/>
            </s>
            <s xml:space="preserve">ſi enim intelligantur duæ pyramides a b c d e, g h k l m, ha-
              <lb/>
            bebunt hæ inter ſe proportionem eandem, quam ipſarum
              <lb/>
            baſes ex ſexta duodecimi elementorum. </s>
            <s xml:space="preserve">Sed ut baſis a b c d
              <lb/>
            ad g h K l baſim, ita linea o ad lineam p; </s>
            <s xml:space="preserve">hoc eſt ad lineam q
              <lb/>
            ei æqualem. </s>
            <s xml:space="preserve">ergo priſma a e ad priſma g m eſt, ut linea o
              <lb/>
            ad lineam q. </s>
            <s xml:space="preserve">proportio autem o ad q cõpoſita eſt ex pro-
              <lb/>
            portione o ad p, & </s>
            <s xml:space="preserve">ex proportione p ad q. </s>
            <s xml:space="preserve">quare priſma
              <lb/>
            a e ad priſma g m, & </s>
            <s xml:space="preserve">idcirco pyramis a b c d e, ad pyrami-
              <lb/>
            dem g h K l m proportionem habet ex eiſdem proportio-
              <lb/>
            nibus compoſitam, uidelicet ex proportione baſis a b c d
              <lb/>
            ad baſim g h _K_ l, & </s>
            <s xml:space="preserve">ex proportione altitudinis e f ad m n al
              <lb/>
            titudinem. </s>
            <s xml:space="preserve">Quòd ſi lineæ e f, m n inæquales ponantur, ſit
              <lb/>
            e f minor: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut e f ad m n, ita fiat linea p ad lineam u: </s>
            <s xml:space="preserve">de
              <lb/>
              <anchor type="figure" xlink:label="fig-0165-01a" xlink:href="fig-0165-01"/>
            inde ab ipſa m n abſcindatur r n æqualis e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per r duca-
              <lb/>
            tur planum, quod oppoſitis planis æquidiſtans faciat ſe-
              <lb/>
            ctionem s t. </s>
            <s xml:space="preserve">erit priſma a e, ad priſma g t, ut baſis a b c d
              <lb/>
            ad baſim g h k l; </s>
            <s xml:space="preserve">hoc eſt ut o ad p: </s>
            <s xml:space="preserve">ut autem priſma g t ad
              <lb/>
            priſma g m, ita altitudo r n; </s>
            <s xml:space="preserve">hoc eſt e f ad altitudinẽ m n;
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="note" xlink:label="note-0165-01a" xlink:href="note-0165-01"/>
            uidelicet linea p ad lineam u. </s>
            <s xml:space="preserve">ergo ex æquali priſma a e ad
              <lb/>
            priſma g m eſt, ut linea o ad ipſam u. </s>
            <s xml:space="preserve">Sed proportio o ad
              <lb/>
            u cõpoſita eſt ex proportione o ad p, quæ eſt baſis a b c d
              <lb/>
            ad baſim g h k l; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ex proportione p ad u, quæ eſt altitudi-
              <lb/>
            nis e f ad altitudinem m n. </s>
            <s xml:space="preserve">priſma igitur a e ad priſma g m</s>
          </p>
        </div>
      </text>
    </echo>