Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < (2) of 213 > >|
1152DE CENTRO GRAVIT. SOLID. tur, centrum grauitatis eſt idem, quod circuli cen
trum.
Sit primo triangulum æquilaterum a b c in circulo de-
ſcriptum:
& diuiſa a c bifariam in d, ducatur b d. erit in li-
nea b d centrum grauitatis triãguli a b c, ex tertia decima
primi libri Archimedis de centro grauitatis planorum.
Et
quoniam linea a b eſt æqualis
70[Figure 70] lineæ b c;
& a d ipſi d c; eſtq́;
b d utrique communis: trian-
gulum a b d æquale erit trian
118. primi. gulo c b d:
& anguli angulis æ-
quales, qui æqualibus lateri-
bus ſubtenduntur.
ergo angu
2213. primi. li ad d utriq;
recti ſunt. quòd
cum linea b d ſecet a c biſa-
riam, &
ad angulos rectos; in
33corol. p@@
mæ tertii
ipſa b d eſt centrum circuli.
quare in eadem b d linea erit
centrum grauitatis trianguli, &
circuli centrum. Similiter
diuiſa a b bifariam in e, &
ducta c e, oſtendetur in ipſa utrũ
que centrum contineri.
ergo ea erunt in puncto, in quo li-
neæ b d, c e conueniunt.
trianguli igitur a b c centrum gra
uitatis eſt idem, quod circuli centrum.
Sit quadratum a b c d in cir-
71[Figure 71] culo deſcriptum:
& ducantur
a c, b d, quæ conueniant in e.
er-
go punctum e eſt centrum gra
uitatis quadrati, ex decima eiuſ
dem libri Archimedis.
Sed cum
omnes anguli ad a b c d recti
ſint;
erit a b c femicirculus:
4451. tortil. itemq́; b c d: & propterea li-
neæ a c, b d diametri circuli:

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index