Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="65">
          <p>
            <s xml:space="preserve">
              <pb file="0120" n="120" rhead="FED. COMMANDINI"/>
            triangulum m k φ triangulo n k φ. </s>
            <s xml:space="preserve">ergo anguli l z k, o z k,
              <lb/>
            m φ k, n φ k æquales ſunt, ac recti. </s>
            <s xml:space="preserve">quòd cum etiam recti
              <lb/>
            ſint, qui ad k; </s>
            <s xml:space="preserve">æquidiſtabunt lineæ l o, m n axi b d. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita.
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="note" xlink:label="note-0120-01a" xlink:href="note-0120-01"/>
            demonſtrabuntur l m, o n ipſi a c æquidiſtare. </s>
            <s xml:space="preserve">Rurſus ſi
              <lb/>
            iungantur a l, l b, b m, m c, c n, n d, d o, o a: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam di
              <lb/>
            uidantur: </s>
            <s xml:space="preserve">à centro autem k ad diuiſiones ductæ lineæ pro-
              <lb/>
            trahantur uſque ad ſectionem in puncta p q r s t u x y: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">po
              <lb/>
            ſtremo p y, q x, r u, s t, q r, p s, y t, x u coniungantur. </s>
            <s xml:space="preserve">Simili-
              <lb/>
            ter oſtendemus lineas
              <lb/>
              <anchor type="figure" xlink:label="fig-0120-01a" xlink:href="fig-0120-01"/>
            p y, q x, r u, s t axi b d æ-
              <lb/>
            quidiſtantes eſſe: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">q r,
              <lb/>
            p s, y t, x u æquidiſtan-
              <lb/>
            tesipſi a c. </s>
            <s xml:space="preserve">Itaque dico
              <lb/>
            harum figurarum in el-
              <lb/>
            lipſi deſcriptarum cen-
              <lb/>
            trum grauitatis eſſe pũ-
              <lb/>
            ctum k, idem quod & </s>
            <s xml:space="preserve">el
              <lb/>
            lipſis centrum. </s>
            <s xml:space="preserve">quadri-
              <lb/>
            lateri enim a b c d cen-
              <lb/>
            trum eſt k, ex decima e-
              <lb/>
            iuſdem libri Archime-
              <lb/>
            dis, quippe cũ in eo om
              <lb/>
            nes diametri cõueniãt.
              <lb/>
            </s>
            <s xml:space="preserve">Sed in figura alb m c n
              <lb/>
              <anchor type="note" xlink:label="note-0120-02a" xlink:href="note-0120-02"/>
            d o, quoniam trianguli
              <lb/>
            alb centrum grauitatis
              <lb/>
              <anchor type="note" xlink:label="note-0120-03a" xlink:href="note-0120-03"/>
            eſt in linea l e: </s>
            <s xml:space="preserve">trapezijq́; </s>
            <s xml:space="preserve">a b m o centrum in linea e k: </s>
            <s xml:space="preserve">trape
              <lb/>
            zij o m c d in k g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trianguli c n d in ipſa g n: </s>
            <s xml:space="preserve">erit magnitu
              <lb/>
            dinis ex his omnibus conſtantis, uidelicet totius figuræ cen
              <lb/>
            trum grauitatis in linea l n: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">o b eandem cauſſam in linea
              <lb/>
            o m. </s>
            <s xml:space="preserve">eſt enim trianguli a o d centrum in linea o h: </s>
            <s xml:space="preserve">trapezij
              <lb/>
            a l n d in h k: </s>
            <s xml:space="preserve">trapezij l b c n in k f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trianguli b m c in fm.
              <lb/>
            </s>
            <s xml:space="preserve">cum ergo figuræ a l b m c n d o centrum grauitatis ſit in li-
              <lb/>
            nea l n, & </s>
            <s xml:space="preserve">in linea o m; </s>
            <s xml:space="preserve">erit centrum ipſius punctum k, in</s>
          </p>
        </div>
      </text>
    </echo>