Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < (14) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb o="14" file="0139" n="139" rhead="DE CENTRO GRAVIT. SOLID."/>
            ſimiliter demonſtrabitur totius priſmatis a _K_ grauitatis eſ
              <lb/>
            ſe centrum. </s>
            <s xml:space="preserve">Simili ratione & </s>
            <s xml:space="preserve">in aliis priſinatibus illud
              <lb/>
            idem ſacile demonſtrabitur. </s>
            <s xml:space="preserve">Quo autem pacto in omni
              <lb/>
            figura rectilinea centrum grauitatis inueniatur, do cuimus
              <lb/>
            in commentariis in ſextam propoſitionem Archimedis de
              <lb/>
            quadratura parabolæ.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="4">
            <figure xlink:label="fig-0138-01" xlink:href="fig-0138-01a">
              <image file="0138-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0138-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit cylindrus, uel cylindri portio c e cuius axis a b: </s>
            <s xml:space="preserve">ſece-
              <lb/>
            turq, plano per axem ducto; </s>
            <s xml:space="preserve">quod ſectionem faciat paral-
              <lb/>
            lelo grammum c d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">diuiſis c f, d e bifariam in punctis
              <lb/>
              <anchor type="figure" xlink:label="fig-0139-01a" xlink:href="fig-0139-01"/>
            g h, per ea ducatur planum baſi æquidiſtans. </s>
            <s xml:space="preserve">erit ſectio g h
              <lb/>
            circulus, uel ellipſis, centrum habens in axe; </s>
            <s xml:space="preserve">quod ſit K: </s>
            <s xml:space="preserve">at-
              <lb/>
              <anchor type="note" xlink:label="note-0139-01a" xlink:href="note-0139-01"/>
            que erunt ex iis, quæ demonſtrauimus, centra grauitatis
              <lb/>
            planorum oppoſitorum puncta a b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">plani g h ipſum _k_. </s>
            <s xml:space="preserve">in
              <lb/>
            quo quidem plano eſt centrum grauitatis cylindri, uel cy-
              <lb/>
            lindri portionis. </s>
            <s xml:space="preserve">Dico punctum K cylindri quoque, uel cy
              <lb/>
            lindri portionis grauitatis centrum eſſe. </s>
            <s xml:space="preserve">Si enim fieri po-
              <lb/>
            teſt, ſitl centrum: </s>
            <s xml:space="preserve">ducaturq; </s>
            <s xml:space="preserve">k l, & </s>
            <s xml:space="preserve">extra figuram in m pro-
              <lb/>
            ducatur. </s>
            <s xml:space="preserve">quam uero proportionem habet linea m K ad _k_ l</s>
          </p>
        </div>
      </text>
    </echo>