Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < (15) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3622" xml:space="preserve">
              <pb o="15" file="0143" n="143" rhead="DE CENTRO GRAVIT. SOLID."/>
              <figure xlink:label="fig-0143-01" xlink:href="fig-0143-01a" number="97">
                <image file="0143-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0143-01"/>
              </figure>
            ni portionem, ita eſt c_y_lindrus ad c_y_lindrum, uel c_y_lin-
              <lb/>
            dri portio ad c_y_lindri portionem: </s>
            <s xml:id="echoid-s3623" xml:space="preserve">& </s>
            <s xml:id="echoid-s3624" xml:space="preserve">ut p_y_ramis ad p_y_ra-
              <lb/>
            midem, ita priſma ad priſma, cum eadem ſit baſis, & </s>
            <s xml:id="echoid-s3625" xml:space="preserve">æqua
              <lb/>
            lis altitudo; </s>
            <s xml:id="echoid-s3626" xml:space="preserve">erit c_y_lindrus uel c_y_lindri portio x priſma-
              <lb/>
            ti _y_ æqualis. </s>
            <s xml:id="echoid-s3627" xml:space="preserve">eftq; </s>
            <s xml:id="echoid-s3628" xml:space="preserve">ut ſpacium g h ad ſpacium x, ita c_y_lin-
              <lb/>
            drus, uel c_y_lindri portio c e ad c_y_lindrum, uel c_y_lindri por-
              <lb/>
            tionem x. </s>
            <s xml:id="echoid-s3629" xml:space="preserve">Conſtatigitur c_y_lindrum uel c_y_lindri portionẽ
              <lb/>
            c e, ad priſina_y_, quippe cuius baſis eſt figura rectilinea in
              <lb/>
              <note position="right" xlink:label="note-0143-01" xlink:href="note-0143-01a" xml:space="preserve">7. quinti</note>
            ſpacio g h deſcripta, eandem proportionem habere, quam
              <lb/>
            ſpacium g h habet ad ſpacium x, hoc eſt ad dictam figuram.
              <lb/>
            </s>
            <s xml:id="echoid-s3630" xml:space="preserve">quod demonſtrandum fuerat.</s>
            <s xml:id="echoid-s3631" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div224" type="section" level="1" n="74">
          <head xml:id="echoid-head81" xml:space="preserve">THE OREMA IX. PROPOSITIO IX.</head>
          <p>
            <s xml:id="echoid-s3632" xml:space="preserve">Si pyramis ſecetur plano baſi æquidiſtante; </s>
            <s xml:id="echoid-s3633" xml:space="preserve">ſe-
              <lb/>
            ctio erit figura ſimilis ei, quæ eſt baſis, centrum
              <lb/>
            grauitatis in axe habens.</s>
            <s xml:id="echoid-s3634" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>