Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < (28) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div254" type="section" level="1" n="87">
          <p>
            <s xml:id="echoid-s4135" xml:space="preserve">
              <pb o="28" file="0167" n="167" rhead="DE CENTRO GRAVIT. SOLID."/>
            uel coni portionis axis à centro grauitatis ita diui
              <lb/>
            ditur, ut pars, quæ terminatur ad uerticem reli-
              <lb/>
            quæ partis, quæ ad baſim, ſit tripla.</s>
            <s xml:id="echoid-s4136" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4137" xml:space="preserve">Sit pyramis, cuius baſis triangulum a b c; </s>
            <s xml:id="echoid-s4138" xml:space="preserve">axis d e; </s>
            <s xml:id="echoid-s4139" xml:space="preserve">& </s>
            <s xml:id="echoid-s4140" xml:space="preserve">gra
              <lb/>
            uitatis centrum _K_. </s>
            <s xml:id="echoid-s4141" xml:space="preserve">Dico lineam d k ipſius _K_ e triplam eſſe.
              <lb/>
            </s>
            <s xml:id="echoid-s4142" xml:space="preserve">trianguli enim b d c centrum grauitatis ſit punctum f; </s>
            <s xml:id="echoid-s4143" xml:space="preserve">triã
              <lb/>
            guli a d c centrũ g; </s>
            <s xml:id="echoid-s4144" xml:space="preserve">& </s>
            <s xml:id="echoid-s4145" xml:space="preserve">trianguli a d b ſit h: </s>
            <s xml:id="echoid-s4146" xml:space="preserve">& </s>
            <s xml:id="echoid-s4147" xml:space="preserve">iungantur a f,
              <lb/>
            b g, c h. </s>
            <s xml:id="echoid-s4148" xml:space="preserve">Quoniam igitur centrũ grauitatis pyramidis in axe
              <lb/>
            cõſiſtit: </s>
            <s xml:id="echoid-s4149" xml:space="preserve">ſuntq; </s>
            <s xml:id="echoid-s4150" xml:space="preserve">d e, a f, b g, c h eiuſdẽ pyramidis axes: </s>
            <s xml:id="echoid-s4151" xml:space="preserve">conue
              <lb/>
              <note position="right" xlink:label="note-0167-01" xlink:href="note-0167-01a" xml:space="preserve">17. huíus</note>
            nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
              <lb/>
            </s>
            <s xml:id="echoid-s4152" xml:space="preserve">Itaque animo concipiamus hanc pyramidem diuiſam in
              <lb/>
            quatuor pyramides, quarum baſes ſint ipſa pyramidis
              <lb/>
            triangula; </s>
            <s xml:id="echoid-s4153" xml:space="preserve">& </s>
            <s xml:id="echoid-s4154" xml:space="preserve">axis pun-
              <lb/>
              <handwritten xlink:label="hd-0167-01" xlink:href="hd-0167-01a" number="8"/>
              <figure xlink:label="fig-0167-01" xlink:href="fig-0167-01a" number="123">
                <image file="0167-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0167-01"/>
              </figure>
            ctum k quæ quidem py-
              <lb/>
            ramides inter ſe æquales
              <lb/>
            ſunt, ut demõſtrabitur.
              <lb/>
            </s>
            <s xml:id="echoid-s4155" xml:space="preserve">Ducatur enĩ per lineas
              <lb/>
            d c, d e planum ſecãs, ut
              <lb/>
            ſit ipſius, & </s>
            <s xml:id="echoid-s4156" xml:space="preserve">baſis a b c cõ
              <lb/>
            munis ſectio recta linea
              <lb/>
            c e l: </s>
            <s xml:id="echoid-s4157" xml:space="preserve">eiuſdẽ uero & </s>
            <s xml:id="echoid-s4158" xml:space="preserve">triã-
              <lb/>
            guli a d b ſitlinea d h l. </s>
            <s xml:id="echoid-s4159" xml:space="preserve">
              <lb/>
            erit linea a l æqualis ipſi
              <lb/>
            l b: </s>
            <s xml:id="echoid-s4160" xml:space="preserve">nam centrum graui-
              <lb/>
            tatis trianguli conſiſtit
              <lb/>
            in linea, quæ ab angulo
              <lb/>
            ad dimidiam baſim per-
              <lb/>
            ducitur, ex tertia deci-
              <lb/>
            ma Archimedis. </s>
            <s xml:id="echoid-s4161" xml:space="preserve">quare
              <lb/>
              <note position="right" xlink:label="note-0167-02" xlink:href="note-0167-02a" xml:space="preserve">1. ſexti.</note>
            triangulum a c l æquale
              <lb/>
            eſt triangulo b c l: </s>
            <s xml:id="echoid-s4162" xml:space="preserve">& </s>
            <s xml:id="echoid-s4163" xml:space="preserve">propterea pyramis, cuius baſis trian-
              <lb/>
            gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
              <lb/>
            triangulum, & </s>
            <s xml:id="echoid-s4164" xml:space="preserve">idem uertex. </s>
            <s xml:id="echoid-s4165" xml:space="preserve">pyramides enim, quæ ab eodẽ
              <lb/>
              <note position="right" xlink:label="note-0167-03" xlink:href="note-0167-03a" xml:space="preserve">5. duode-
                <lb/>
              cimi.</note>
            </s>
          </p>
        </div>
      </text>
    </echo>