Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(28)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div254
"
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:id
="
echoid-s4135
"
xml:space
="
preserve
">
<
pb
o
="
28
"
file
="
0167
"
n
="
167
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
uel coni portionis axis à centro grauitatis ita diui
<
lb
/>
ditur, ut pars, quæ terminatur ad uerticem reli-
<
lb
/>
quæ partis, quæ ad baſim, ſit tripla.</
s
>
<
s
xml:id
="
echoid-s4136
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4137
"
xml:space
="
preserve
">Sit pyramis, cuius baſis triangulum a b c; </
s
>
<
s
xml:id
="
echoid-s4138
"
xml:space
="
preserve
">axis d e; </
s
>
<
s
xml:id
="
echoid-s4139
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4140
"
xml:space
="
preserve
">gra
<
lb
/>
uitatis centrum _K_. </
s
>
<
s
xml:id
="
echoid-s4141
"
xml:space
="
preserve
">Dico lineam d k ipſius _K_ e triplam eſſe.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4142
"
xml:space
="
preserve
">trianguli enim b d c centrum grauitatis ſit punctum f; </
s
>
<
s
xml:id
="
echoid-s4143
"
xml:space
="
preserve
">triã
<
lb
/>
guli a d c centrũ g; </
s
>
<
s
xml:id
="
echoid-s4144
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4145
"
xml:space
="
preserve
">trianguli a d b ſit h: </
s
>
<
s
xml:id
="
echoid-s4146
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4147
"
xml:space
="
preserve
">iungantur a f,
<
lb
/>
b g, c h. </
s
>
<
s
xml:id
="
echoid-s4148
"
xml:space
="
preserve
">Quoniam igitur centrũ grauitatis pyramidis in axe
<
lb
/>
cõſiſtit: </
s
>
<
s
xml:id
="
echoid-s4149
"
xml:space
="
preserve
">ſuntq; </
s
>
<
s
xml:id
="
echoid-s4150
"
xml:space
="
preserve
">d e, a f, b g, c h eiuſdẽ pyramidis axes: </
s
>
<
s
xml:id
="
echoid-s4151
"
xml:space
="
preserve
">conue
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0167-01
"
xlink:href
="
note-0167-01a
"
xml:space
="
preserve
">17. huíus</
note
>
nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4152
"
xml:space
="
preserve
">Itaque animo concipiamus hanc pyramidem diuiſam in
<
lb
/>
quatuor pyramides, quarum baſes ſint ipſa pyramidis
<
lb
/>
triangula; </
s
>
<
s
xml:id
="
echoid-s4153
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4154
"
xml:space
="
preserve
">axis pun-
<
lb
/>
<
handwritten
xlink:label
="
hd-0167-01
"
xlink:href
="
hd-0167-01a
"
number
="
8
"/>
<
figure
xlink:label
="
fig-0167-01
"
xlink:href
="
fig-0167-01a
"
number
="
123
">
<
image
file
="
0167-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0167-01
"/>
</
figure
>
ctum k quæ quidem py-
<
lb
/>
ramides inter ſe æquales
<
lb
/>
ſunt, ut demõſtrabitur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4155
"
xml:space
="
preserve
">Ducatur enĩ per lineas
<
lb
/>
d c, d e planum ſecãs, ut
<
lb
/>
ſit ipſius, & </
s
>
<
s
xml:id
="
echoid-s4156
"
xml:space
="
preserve
">baſis a b c cõ
<
lb
/>
munis ſectio recta linea
<
lb
/>
c e l: </
s
>
<
s
xml:id
="
echoid-s4157
"
xml:space
="
preserve
">eiuſdẽ uero & </
s
>
<
s
xml:id
="
echoid-s4158
"
xml:space
="
preserve
">triã-
<
lb
/>
guli a d b ſitlinea d h l. </
s
>
<
s
xml:id
="
echoid-s4159
"
xml:space
="
preserve
">
<
lb
/>
erit linea a l æqualis ipſi
<
lb
/>
l b: </
s
>
<
s
xml:id
="
echoid-s4160
"
xml:space
="
preserve
">nam centrum graui-
<
lb
/>
tatis trianguli conſiſtit
<
lb
/>
in linea, quæ ab angulo
<
lb
/>
ad dimidiam baſim per-
<
lb
/>
ducitur, ex tertia deci-
<
lb
/>
ma Archimedis. </
s
>
<
s
xml:id
="
echoid-s4161
"
xml:space
="
preserve
">quare
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0167-02
"
xlink:href
="
note-0167-02a
"
xml:space
="
preserve
">1. ſexti.</
note
>
triangulum a c l æquale
<
lb
/>
eſt triangulo b c l: </
s
>
<
s
xml:id
="
echoid-s4162
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4163
"
xml:space
="
preserve
">propterea pyramis, cuius baſis trian-
<
lb
/>
gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
<
lb
/>
triangulum, & </
s
>
<
s
xml:id
="
echoid-s4164
"
xml:space
="
preserve
">idem uertex. </
s
>
<
s
xml:id
="
echoid-s4165
"
xml:space
="
preserve
">pyramides enim, quæ ab eodẽ
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0167-03
"
xlink:href
="
note-0167-03a
"
xml:space
="
preserve
">5. duode-
<
lb
/>
cimi.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>