Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div272" type="section" level="1" n="92">
          <p>
            <s xml:id="echoid-s4708" xml:space="preserve">
              <pb file="0188" n="188" rhead="FED. COMMANDINI"/>
            At cum e f ſit ſexta pars axis
              <lb/>
              <figure xlink:label="fig-0188-01" xlink:href="fig-0188-01a" number="138">
                <image file="0188-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-01"/>
              </figure>
            ſphæræ, crit d e tripla e f. </s>
            <s xml:id="echoid-s4709" xml:space="preserve">ergo
              <lb/>
            punctum e eſt grauitatis cen-
              <lb/>
            trum ipſius pyramidis: </s>
            <s xml:id="echoid-s4710" xml:space="preserve">quod
              <lb/>
            in uigeſima ſecunda huius de-
              <lb/>
            monſtratum fuit. </s>
            <s xml:id="echoid-s4711" xml:space="preserve">Sed e eſt cen
              <lb/>
            trum ſphæræ. </s>
            <s xml:id="echoid-s4712" xml:space="preserve">Sequitur igitur,
              <lb/>
            ut centrum grauitatis pyrami-
              <lb/>
            dis in ſphæra deſcriptæ idem
              <lb/>
            ſit, quod ipſius ſphæræ cen-
              <lb/>
            trum.</s>
            <s xml:id="echoid-s4713" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4714" xml:space="preserve">Sit cubus in ſphæra deſcriptus a b, & </s>
            <s xml:id="echoid-s4715" xml:space="preserve">oppoſitorum pla-
              <lb/>
            norum lateribus bifariam diuiſis, per puncta diuiſionum
              <lb/>
            plana ducantur, ut communis ipſorum ſectio ſit recta li-
              <lb/>
            nea c d. </s>
            <s xml:id="echoid-s4716" xml:space="preserve">Itaque ſi ducatur a b, ſolidi ſcilicet diameter, lineæ
              <lb/>
            a b, c d ex trigeſimanona undecimi ſeſe bifariam ſecabunt.
              <lb/>
            </s>
            <s xml:id="echoid-s4717" xml:space="preserve">ſecent autem in puncto e. </s>
            <s xml:id="echoid-s4718" xml:space="preserve">erit
              <lb/>
              <figure xlink:label="fig-0188-02" xlink:href="fig-0188-02a" number="139">
                <image file="0188-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-02"/>
              </figure>
            e centrũ grauitatis ſolidi a b,
              <lb/>
            id quod demonſtratum eſt in
              <lb/>
            octaua huius. </s>
            <s xml:id="echoid-s4719" xml:space="preserve">Sed quoniam ab
              <lb/>
            eſt ſphæræ diametro æqualis,
              <lb/>
            ut in decima quinta propoſi-
              <lb/>
            tione tertii decimi libri elemẽ
              <lb/>
            torum oſtenditur: </s>
            <s xml:id="echoid-s4720" xml:space="preserve">punctum e
              <lb/>
            ſphæræ quoque centrum erit.
              <lb/>
            </s>
            <s xml:id="echoid-s4721" xml:space="preserve">Cubi igitur in ſphæra deſcri-
              <lb/>
            pti grauitatis centrum idem
              <lb/>
            eſt, quod centrum ipſius ſphæræ.</s>
            <s xml:id="echoid-s4722" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4723" xml:space="preserve">Sit octahedrum a b c d e f, in ſphæra deſcriptum, cuius
              <lb/>
            ſphæræ centrum ſit g. </s>
            <s xml:id="echoid-s4724" xml:space="preserve">Dico punctum g ipſius octahedri
              <lb/>
            grauitatis centrum eſſe. </s>
            <s xml:id="echoid-s4725" xml:space="preserve">Conſtat enim ex iis, quæ demon-
              <lb/>
            ſtrata ſunt à Campano in quinto decimo libro elemento-
              <lb/>
            rum, propoſitione ſextadecima eiuſimodi ſolidum diuidi
              <lb/>
            in duas pyramides æquales, & </s>
            <s xml:id="echoid-s4726" xml:space="preserve">ſimiles; </s>
            <s xml:id="echoid-s4727" xml:space="preserve">uidelicetin </s>
          </p>
        </div>
      </text>
    </echo>