Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb file="0190" n="190" rhead="FED. COMMANDINI"/>
            ctiones circuli ex prima propofitione ſphæricorum Theo
              <lb/>
            doſii: </s>
            <s xml:space="preserve">unus quidem circa triangulum a b c deſcriptus: </s>
            <s xml:space="preserve">al-
              <lb/>
            ter uero circa d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam triangula a b c, d e f æqua-
              <lb/>
            lia ſunt, & </s>
            <s xml:space="preserve">ſimilia; </s>
            <s xml:space="preserve">erunt ex prima, & </s>
            <s xml:space="preserve">ſecunda propoſitione
              <lb/>
            duodecimi libri elementorum, circuli quoque inter ſe ſe
              <lb/>
            æquales. </s>
            <s xml:space="preserve">poſtremo a centro g ad circulum a b c perpendi
              <lb/>
            cularis ducatur g h; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">alia perpendicularis ducatur ad cir
              <lb/>
            culum d e f, quæ ſit g _k_; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur a h, d k. </s>
            <s xml:space="preserve">perſpicuum
              <lb/>
            eſt ex corollario primæ ſphæricorum Theodoſii, punctum
              <lb/>
            h centrum eſſe circuli a b c, & </s>
            <s xml:space="preserve">k centrum circuli d e f. </s>
            <s xml:space="preserve">Quo
              <lb/>
            niam igitur triangulorum g a h, g d K latus a g eſt æquale la
              <lb/>
            teri g d; </s>
            <s xml:space="preserve">ſunt enim à centro ſphæræ ad ſuperficiem: </s>
            <s xml:space="preserve">atque
              <lb/>
            eſt a h æquale d k: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ex ſexta propoſitione libri primi ſphæ
              <lb/>
            ricorum Theodoſii g h ipſi g K: </s>
            <s xml:space="preserve">triangulum g a h æquale
              <lb/>
            erit, & </s>
            <s xml:space="preserve">ſimile g d k triangulo: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">angulus a g h æqualis an-
              <lb/>
            gulo d g _K_. </s>
            <s xml:space="preserve">ſed anguli a g h, h g d ſunt æquales duobus re-
              <lb/>
              <anchor type="note" xlink:label="note-0190-01a" xlink:href="note-0190-01"/>
            ctis. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">ipſi h g d, d g k duobus rectis æquales erunt.
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcirco h g, g _K_ una, atque eadem erit linea. </s>
            <s xml:space="preserve">cum autem
              <lb/>
              <anchor type="note" xlink:label="note-0190-02a" xlink:href="note-0190-02"/>
            h ſit centrũ circuli, & </s>
            <s xml:space="preserve">tri-
              <lb/>
              <anchor type="figure" xlink:label="fig-0190-01a" xlink:href="fig-0190-01"/>
            anguli a b c grauitatis cen
              <lb/>
            trũ probabitur ex iis, quæ
              <lb/>
            in prima propoſitione hu
              <lb/>
            ius tradita funt. </s>
            <s xml:space="preserve">quare g h
              <lb/>
            erit pyramidis a b c g axis.
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ob eandem cauſſam g k
              <lb/>
            axis pyramidis d e f g. </s>
            <s xml:space="preserve">Ita-
              <lb/>
            que centrum grauitatis py
              <lb/>
            ramidis a b c g ſit púctum
              <lb/>
            l, & </s>
            <s xml:space="preserve">pyramidis d e f g ſit m. </s>
            <s xml:space="preserve">
              <lb/>
            Similiter ut ſupra demon-
              <lb/>
            ſtrabimus m g, g linter ſe æquales eſſe, & </s>
            <s xml:space="preserve">punctum g graui
              <lb/>
            tatis centrum magnitudinis, quæ ex utriſque pyramidibus
              <lb/>
            conſtat. </s>
            <s xml:space="preserve">eodem modo demonſtrabitur, quarumcunque
              <lb/>
            duarum pyramidum, quæ opponuntur, grauitatis centrũ</s>
          </p>
        </div>
      </text>
    </echo>