Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4763
"
xml:space
="
preserve
">
<
pb
file
="
0190
"
n
="
190
"
rhead
="
FED. COMMANDINI
"/>
ctiones circuli ex prima propofitione ſphæricorum Theo
<
lb
/>
doſii: </
s
>
<
s
xml:id
="
echoid-s4764
"
xml:space
="
preserve
">unus quidem circa triangulum a b c deſcriptus: </
s
>
<
s
xml:id
="
echoid-s4765
"
xml:space
="
preserve
">al-
<
lb
/>
ter uero circa d e f: </
s
>
<
s
xml:id
="
echoid-s4766
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4767
"
xml:space
="
preserve
">quoniam triangula a b c, d e f æqua-
<
lb
/>
lia ſunt, & </
s
>
<
s
xml:id
="
echoid-s4768
"
xml:space
="
preserve
">ſimilia; </
s
>
<
s
xml:id
="
echoid-s4769
"
xml:space
="
preserve
">erunt ex prima, & </
s
>
<
s
xml:id
="
echoid-s4770
"
xml:space
="
preserve
">ſecunda propoſitione
<
lb
/>
duodecimi libri elementorum, circuli quoque inter ſe ſe
<
lb
/>
æquales. </
s
>
<
s
xml:id
="
echoid-s4771
"
xml:space
="
preserve
">poſtremo a centro g ad circulum a b c perpendi
<
lb
/>
cularis ducatur g h; </
s
>
<
s
xml:id
="
echoid-s4772
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4773
"
xml:space
="
preserve
">alia perpendicularis ducatur ad cir
<
lb
/>
culum d e f, quæ ſit g _k_; </
s
>
<
s
xml:id
="
echoid-s4774
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4775
"
xml:space
="
preserve
">iungantur a h, d k. </
s
>
<
s
xml:id
="
echoid-s4776
"
xml:space
="
preserve
">perſpicuum
<
lb
/>
eſt ex corollario primæ ſphæricorum Theodoſii, punctum
<
lb
/>
h centrum eſſe circuli a b c, & </
s
>
<
s
xml:id
="
echoid-s4777
"
xml:space
="
preserve
">k centrum circuli d e f. </
s
>
<
s
xml:id
="
echoid-s4778
"
xml:space
="
preserve
">Quo
<
lb
/>
niam igitur triangulorum g a h, g d K latus a g eſt æquale la
<
lb
/>
teri g d; </
s
>
<
s
xml:id
="
echoid-s4779
"
xml:space
="
preserve
">ſunt enim à centro ſphæræ ad ſuperficiem: </
s
>
<
s
xml:id
="
echoid-s4780
"
xml:space
="
preserve
">atque
<
lb
/>
eſt a h æquale d k: </
s
>
<
s
xml:id
="
echoid-s4781
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4782
"
xml:space
="
preserve
">ex ſexta propoſitione libri primi ſphæ
<
lb
/>
ricorum Theodoſii g h ipſi g K: </
s
>
<
s
xml:id
="
echoid-s4783
"
xml:space
="
preserve
">triangulum g a h æquale
<
lb
/>
erit, & </
s
>
<
s
xml:id
="
echoid-s4784
"
xml:space
="
preserve
">ſimile g d k triangulo: </
s
>
<
s
xml:id
="
echoid-s4785
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4786
"
xml:space
="
preserve
">angulus a g h æqualis an-
<
lb
/>
gulo d g _K_. </
s
>
<
s
xml:id
="
echoid-s4787
"
xml:space
="
preserve
">ſed anguli a g h, h g d ſunt æquales duobus re-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0190-01
"
xlink:href
="
note-0190-01a
"
xml:space
="
preserve
">13. primi</
note
>
ctis. </
s
>
<
s
xml:id
="
echoid-s4788
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s4789
"
xml:space
="
preserve
">ipſi h g d, d g k duobus rectis æquales erunt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4790
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4791
"
xml:space
="
preserve
">idcirco h g, g _K_ una, atque eadem erit linea. </
s
>
<
s
xml:id
="
echoid-s4792
"
xml:space
="
preserve
">cum autem
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0190-02
"
xlink:href
="
note-0190-02a
"
xml:space
="
preserve
">14. primi</
note
>
h ſit centrũ circuli, & </
s
>
<
s
xml:id
="
echoid-s4793
"
xml:space
="
preserve
">tri-
<
lb
/>
<
figure
xlink:label
="
fig-0190-01
"
xlink:href
="
fig-0190-01a
"
number
="
141
">
<
image
file
="
0190-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0190-01
"/>
</
figure
>
anguli a b c grauitatis cen
<
lb
/>
trũ probabitur ex iis, quæ
<
lb
/>
in prima propoſitione hu
<
lb
/>
ius tradita funt. </
s
>
<
s
xml:id
="
echoid-s4794
"
xml:space
="
preserve
">quare g h
<
lb
/>
erit pyramidis a b c g axis.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4795
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4796
"
xml:space
="
preserve
">ob eandem cauſſam g k
<
lb
/>
axis pyramidis d e f g. </
s
>
<
s
xml:id
="
echoid-s4797
"
xml:space
="
preserve
">Ita-
<
lb
/>
que centrum grauitatis py
<
lb
/>
ramidis a b c g ſit púctum
<
lb
/>
l, & </
s
>
<
s
xml:id
="
echoid-s4798
"
xml:space
="
preserve
">pyramidis d e f g ſit m. </
s
>
<
s
xml:id
="
echoid-s4799
"
xml:space
="
preserve
">
<
lb
/>
Similiter ut ſupra demon-
<
lb
/>
ſtrabimus m g, g linter ſe æquales eſſe, & </
s
>
<
s
xml:id
="
echoid-s4800
"
xml:space
="
preserve
">punctum g graui
<
lb
/>
tatis centrum magnitudinis, quæ ex utriſque pyramidibus
<
lb
/>
conſtat. </
s
>
<
s
xml:id
="
echoid-s4801
"
xml:space
="
preserve
">eodem modo demonſtrabitur, quarumcunque
<
lb
/>
duarum pyramidum, quæ opponuntur, grauitatis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>