Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div190" type="section" level="1" n="62">
          <p>
            <s xml:id="echoid-s2820" xml:space="preserve">
              <pb file="0114" n="114" rhead="FED. COMMANDINI"/>
            tes æqueponderantes ipſam diuidet.</s>
            <s xml:id="echoid-s2821" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2822" xml:space="preserve">2 Priſmatis, cylindri, & </s>
            <s xml:id="echoid-s2823" xml:space="preserve">portionis cylindri axem
              <lb/>
            appello rectam lineam, quæ oppoſitorum plano-
              <lb/>
            rum centra grauitatis coniungit.</s>
            <s xml:id="echoid-s2824" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2825" xml:space="preserve">3 Pyramidis, coni, & </s>
            <s xml:id="echoid-s2826" xml:space="preserve">portionis coni axem dico li
              <lb/>
            neam, quæ à uertice ad centrum grauitatis baſis
              <lb/>
            perducitur.</s>
            <s xml:id="echoid-s2827" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2828" xml:space="preserve">4 Si pyramis, conus, portio coni, uel conoidis ſe-
              <lb/>
            cetur plano baſi æquidiſtante, pars, quæ eſt ad ba-
              <lb/>
            ſim, fruſtum pyramidis, coni, portionis coni, uel
              <lb/>
            conoidis dicetur; </s>
            <s xml:id="echoid-s2829" xml:space="preserve">quorum plana æquidiſtantia,
              <lb/>
            quæ opponuntur ſimilia ſunt, & </s>
            <s xml:id="echoid-s2830" xml:space="preserve">inæqualia: </s>
            <s xml:id="echoid-s2831" xml:space="preserve">axes
              <lb/>
            uero ſunt axium figurarum partes, quæ in ipſis
              <lb/>
            comprehenduntur.</s>
            <s xml:id="echoid-s2832" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div191" type="section" level="1" n="63">
          <head xml:id="echoid-head70" xml:space="preserve">PETITIONES.</head>
          <p>
            <s xml:id="echoid-s2833" xml:space="preserve">1 Solidarum figurarum ſimilium centra grauita-
              <lb/>
            tis ſimiliter ſunt poſita.</s>
            <s xml:id="echoid-s2834" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2835" xml:space="preserve">2 Solidis figuris ſimilibus, & </s>
            <s xml:id="echoid-s2836" xml:space="preserve">æqualibus inter ſe
              <lb/>
            aptatis, centra quoque grauitatis ipſarum inter ſe
              <lb/>
            aptata erunt.</s>
            <s xml:id="echoid-s2837" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div192" type="section" level="1" n="64">
          <head xml:id="echoid-head71" xml:space="preserve">THEOREMA I. PROPOSITIO I.</head>
          <p>
            <s xml:id="echoid-s2838" xml:space="preserve">Omnis figuræ rectilineæ in circulo deſcriptæ,
              <lb/>
            quæ æqualibus lateribus, & </s>
            <s xml:id="echoid-s2839" xml:space="preserve">angulis </s>
          </p>
        </div>
      </text>
    </echo>