Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div190
"
type
="
section
"
level
="
1
"
n
="
62
">
<
p
>
<
s
xml:id
="
echoid-s2820
"
xml:space
="
preserve
">
<
pb
file
="
0114
"
n
="
114
"
rhead
="
FED. COMMANDINI
"/>
tes æqueponderantes ipſam diuidet.</
s
>
<
s
xml:id
="
echoid-s2821
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2822
"
xml:space
="
preserve
">2 Priſmatis, cylindri, & </
s
>
<
s
xml:id
="
echoid-s2823
"
xml:space
="
preserve
">portionis cylindri axem
<
lb
/>
appello rectam lineam, quæ oppoſitorum plano-
<
lb
/>
rum centra grauitatis coniungit.</
s
>
<
s
xml:id
="
echoid-s2824
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2825
"
xml:space
="
preserve
">3 Pyramidis, coni, & </
s
>
<
s
xml:id
="
echoid-s2826
"
xml:space
="
preserve
">portionis coni axem dico li
<
lb
/>
neam, quæ à uertice ad centrum grauitatis baſis
<
lb
/>
perducitur.</
s
>
<
s
xml:id
="
echoid-s2827
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2828
"
xml:space
="
preserve
">4 Si pyramis, conus, portio coni, uel conoidis ſe-
<
lb
/>
cetur plano baſi æquidiſtante, pars, quæ eſt ad ba-
<
lb
/>
ſim, fruſtum pyramidis, coni, portionis coni, uel
<
lb
/>
conoidis dicetur; </
s
>
<
s
xml:id
="
echoid-s2829
"
xml:space
="
preserve
">quorum plana æquidiſtantia,
<
lb
/>
quæ opponuntur ſimilia ſunt, & </
s
>
<
s
xml:id
="
echoid-s2830
"
xml:space
="
preserve
">inæqualia: </
s
>
<
s
xml:id
="
echoid-s2831
"
xml:space
="
preserve
">axes
<
lb
/>
uero ſunt axium figurarum partes, quæ in ipſis
<
lb
/>
comprehenduntur.</
s
>
<
s
xml:id
="
echoid-s2832
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div191
"
type
="
section
"
level
="
1
"
n
="
63
">
<
head
xml:id
="
echoid-head70
"
xml:space
="
preserve
">PETITIONES.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2833
"
xml:space
="
preserve
">1 Solidarum figurarum ſimilium centra grauita-
<
lb
/>
tis ſimiliter ſunt poſita.</
s
>
<
s
xml:id
="
echoid-s2834
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2835
"
xml:space
="
preserve
">2 Solidis figuris ſimilibus, & </
s
>
<
s
xml:id
="
echoid-s2836
"
xml:space
="
preserve
">æqualibus inter ſe
<
lb
/>
aptatis, centra quoque grauitatis ipſarum inter ſe
<
lb
/>
aptata erunt.</
s
>
<
s
xml:id
="
echoid-s2837
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div192
"
type
="
section
"
level
="
1
"
n
="
64
">
<
head
xml:id
="
echoid-head71
"
xml:space
="
preserve
">THEOREMA I. PROPOSITIO I.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2838
"
xml:space
="
preserve
">Omnis figuræ rectilineæ in circulo deſcriptæ,
<
lb
/>
quæ æqualibus lateribus, & </
s
>
<
s
xml:id
="
echoid-s2839
"
xml:space
="
preserve
">angulis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>