Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0138" n="138" rhead="FED. COMMANDINI"/>
            ad priſma a b c e f g. </s>
            <s xml:space="preserve">quare linea s y ad y t eandem propor-
              <lb/>
            tionem habet, quam priſma a d c e h g ad priſma a b c e f g.
              <lb/>
            </s>
            <s xml:space="preserve">Sed priſmatis a b c e f g centrum grauitatis eſts: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">priſma-
              <lb/>
            tis a d c e h g centrum t. </s>
            <s xml:space="preserve">magnitudinis igitur ex his compo
              <lb/>
            ſitæ, hoc eſt totius priſmatis a g centrum grauitatis eſt pun
              <lb/>
            ctum y; </s>
            <s xml:space="preserve">medium ſcilicet axis u x, qui oppoſitorum plano-
              <lb/>
            rum centra coniungit.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0137-01" xlink:href="fig-0137-01a">
              <image file="0137-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0137-01"/>
            </figure>
            <note position="right" xlink:label="note-0137-01" xlink:href="note-0137-01a" xml:space="preserve">5. huius.</note>
          </div>
          <p>
            <s xml:space="preserve">Rurſus ſit priſma baſim habens pentagonum a b c d e:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quod ei opponitur ſit f g h _K_ l: </s>
            <s xml:space="preserve">ſec enturq; </s>
            <s xml:space="preserve">a f, b g, c h,
              <lb/>
            d _k_, el bifariam: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per diuiſiones ducto plano, ſectio ſit pẽ
              <lb/>
            tagonũ m n o p q. </s>
            <s xml:space="preserve">deinde iuncta e b per lineas le, e b aliud
              <lb/>
            planum ducatur, diuidẽs priſ
              <lb/>
              <anchor type="figure" xlink:label="fig-0138-01a" xlink:href="fig-0138-01"/>
            ma a k in duo priſmata, in priſ
              <lb/>
            ma ſcilicet al, cuius plana op-
              <lb/>
            poſita ſint triangula a b e f g l:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in prima b _k_ cuius plana op
              <lb/>
            poſita ſint quadrilatera b c d e
              <lb/>
            g h _k_ l. </s>
            <s xml:space="preserve">Sint autem triangulo-
              <lb/>
            rum a b e, f g l centra grauita
              <lb/>
            tis puncta r ſ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b c d e, g h _k_ l
              <lb/>
            quadrilaterorum centra tu: </s>
            <s xml:space="preserve">
              <lb/>
            iunganturq; </s>
            <s xml:space="preserve">r s, t u o ccurren-
              <lb/>
            tes plano m n o p q in punctis
              <lb/>
            x y. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">itidem iungãtur r t, ſu,
              <lb/>
            x y. </s>
            <s xml:space="preserve">erit in linea r t cẽtrum gra
              <lb/>
            uitatis pentagoni a b c d e; </s>
            <s xml:space="preserve">
              <lb/>
            quod ſit z: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in linea ſu cen-
              <lb/>
            trum pentagoni f g h k l: </s>
            <s xml:space="preserve">ſit au
              <lb/>
            tem χ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur z χ, quæ di-
              <lb/>
            cto plano in χ occurrat. </s>
            <s xml:space="preserve">Itaq; </s>
            <s xml:space="preserve">
              <lb/>
            punctum x eſt centrum graui
              <lb/>
            tatis trianguli m n q, ac priſ-
              <lb/>
            matis al: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">y grauitatis centrum quadrilateri n o p q, ac
              <lb/>
            priſmatis b k. </s>
            <s xml:space="preserve">quare y centrum erit pentagoni m n o p q. </s>
            <s xml:space="preserve">&</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>