Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(16)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div224
"
type
="
section
"
level
="
1
"
n
="
74
">
<
pb
o
="
16
"
file
="
0144
"
n
="
144
"
rhead
="
FED. COMMANDINI
"/>
<
p
>
<
s
xml:id
="
echoid-s3635
"
xml:space
="
preserve
">SIT pyramis, cuius baſis triangulum a b c; </
s
>
<
s
xml:id
="
echoid-s3636
"
xml:space
="
preserve
">axis d e: </
s
>
<
s
xml:id
="
echoid-s3637
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3638
"
xml:space
="
preserve
">
<
lb
/>
ſecetur plano baſi æquidiſtante; </
s
>
<
s
xml:id
="
echoid-s3639
"
xml:space
="
preserve
">quod ſectionẽ faciat f g h;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3640
"
xml:space
="
preserve
">occurratq; </
s
>
<
s
xml:id
="
echoid-s3641
"
xml:space
="
preserve
">axi in puncto k. </
s
>
<
s
xml:id
="
echoid-s3642
"
xml:space
="
preserve
">Dico f g h triangulum eſſe, ipſi
<
lb
/>
a b c ſimile; </
s
>
<
s
xml:id
="
echoid-s3643
"
xml:space
="
preserve
">cuius grauitatis centrum eſt K. </
s
>
<
s
xml:id
="
echoid-s3644
"
xml:space
="
preserve
">Quoniã enim
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-01
"
xlink:href
="
note-0144-01a
"
xml:space
="
preserve
">16. unde
<
lb
/>
cimi</
note
>
duo plana æquidiſtantia a b c, f g h ſecantur à plano a b d;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3645
"
xml:space
="
preserve
">communes eorum ſectiones a b, f g æquidiſtantes erunt: </
s
>
<
s
xml:id
="
echoid-s3646
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3647
"
xml:space
="
preserve
">
<
lb
/>
eadem ratione æquidiſtantes ipſæ b c, g h: </
s
>
<
s
xml:id
="
echoid-s3648
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3649
"
xml:space
="
preserve
">c a, h f. </
s
>
<
s
xml:id
="
echoid-s3650
"
xml:space
="
preserve
">Quòd
<
lb
/>
cum duæ lineæ f g, g h, duabus a b, b c æquidiſtent, nec
<
lb
/>
ſintin eodem plano; </
s
>
<
s
xml:id
="
echoid-s3651
"
xml:space
="
preserve
">angulus ad g æqualis eſt angulo ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-02
"
xlink:href
="
note-0144-02a
"
xml:space
="
preserve
">10. undeci
<
lb
/>
mi.</
note
>
b: </
s
>
<
s
xml:id
="
echoid-s3652
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3653
"
xml:space
="
preserve
">ſimiliter angulus ad h angulo ad c: </
s
>
<
s
xml:id
="
echoid-s3654
"
xml:space
="
preserve
">angulusq; </
s
>
<
s
xml:id
="
echoid-s3655
"
xml:space
="
preserve
">ad f ei,
<
lb
/>
qui ad a eſt æqualis. </
s
>
<
s
xml:id
="
echoid-s3656
"
xml:space
="
preserve
">triangulum igitur f g h ſimile eſt tri-
<
lb
/>
angulo a b c. </
s
>
<
s
xml:id
="
echoid-s3657
"
xml:space
="
preserve
">At uero punctum k centrum eſſe grauita-
<
lb
/>
tis trianguli f g h hoc modo oſtendemus. </
s
>
<
s
xml:id
="
echoid-s3658
"
xml:space
="
preserve
">Ducantur pla-
<
lb
/>
na per axem, & </
s
>
<
s
xml:id
="
echoid-s3659
"
xml:space
="
preserve
">per lineas d a, d b, d c: </
s
>
<
s
xml:id
="
echoid-s3660
"
xml:space
="
preserve
">erunt communes ſe-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-03
"
xlink:href
="
note-0144-03a
"
xml:space
="
preserve
">16. unde-
<
lb
/>
cimi</
note
>
ctiones f K, a e æquidiſtantes: </
s
>
<
s
xml:id
="
echoid-s3661
"
xml:space
="
preserve
">pariterq; </
s
>
<
s
xml:id
="
echoid-s3662
"
xml:space
="
preserve
">k g, e b; </
s
>
<
s
xml:id
="
echoid-s3663
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3664
"
xml:space
="
preserve
">k h, e c:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3665
"
xml:space
="
preserve
">quare angulus k f h angulo e a c; </
s
>
<
s
xml:id
="
echoid-s3666
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3667
"
xml:space
="
preserve
">angulus k f g ipſi e a b
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-04
"
xlink:href
="
note-0144-04a
"
xml:space
="
preserve
">10. unde-
<
lb
/>
cimi</
note
>
eſt æqualis. </
s
>
<
s
xml:id
="
echoid-s3668
"
xml:space
="
preserve
">Eadem ratione
<
lb
/>
<
figure
xlink:label
="
fig-0144-01
"
xlink:href
="
fig-0144-01a
"
number
="
98
">
<
image
file
="
0144-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0144-01
"/>
</
figure
>
anguli ad g angulis ad b: </
s
>
<
s
xml:id
="
echoid-s3669
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3670
"
xml:space
="
preserve
">
<
lb
/>
anguli ad h iis, qui ad c æ-
<
lb
/>
quales erunt. </
s
>
<
s
xml:id
="
echoid-s3671
"
xml:space
="
preserve
">ergo puncta
<
lb
/>
e _K_ in triangulis a b c, f g h
<
lb
/>
ſimiliter ſunt poſita, per ſe-
<
lb
/>
xtam poſitionem Archime-
<
lb
/>
dis in libro de centro graui-
<
lb
/>
tatis planorum. </
s
>
<
s
xml:id
="
echoid-s3672
"
xml:space
="
preserve
">Sed cum e
<
lb
/>
ſit centrum grauitatis trian
<
lb
/>
guli a b c, erit ex undecíma
<
lb
/>
propoſitione eiuſdem libri,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3673
"
xml:space
="
preserve
">K trianguli f g h grauita
<
lb
/>
tis centrum. </
s
>
<
s
xml:id
="
echoid-s3674
"
xml:space
="
preserve
">id quod demonſtrare oportebat. </
s
>
<
s
xml:id
="
echoid-s3675
"
xml:space
="
preserve
">Non aliter
<
lb
/>
in ceteris pyramidibus, quod propoſitum eſt demonſtra-
<
lb
/>
bitur.</
s
>
<
s
xml:id
="
echoid-s3676
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>