Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="75">
          <p>
            <s xml:space="preserve">
              <pb file="0146" n="146" rhead="FED. COMMANDINI"/>
            partes d. </s>
            <s xml:space="preserve">in pyramide igitur inſcripta erit quædam figura,
              <lb/>
            ex priſinatibus æqualem altitudinem habentibus cóſtans,
              <lb/>
            ad partes e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">altera circumſcripta ad partes d. </s>
            <s xml:space="preserve">Sed unum-
              <lb/>
            quodque eorum priſmatum, quæ in figura inſcripta conti-
              <lb/>
            nentur, æquale eſt priſmati, quod ab eodem fit triangulo in
              <lb/>
            figura circumſcripta: </s>
            <s xml:space="preserve">nam priſma p q priſmati p o eſt æ-
              <lb/>
            quale; </s>
            <s xml:space="preserve">priſma s t æquale priſmati s r; </s>
            <s xml:space="preserve">priſma x y priſmati
              <lb/>
            x u; </s>
            <s xml:space="preserve">priſma η θ priſinati η z; </s>
            <s xml:space="preserve">priſina μ ν priſmati μ λ; </s>
            <s xml:space="preserve">priſ-
              <lb/>
            ma ρ σ priſmati ρ π; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">priſma φ χ priſinati φ τ æquale. </s>
            <s xml:space="preserve">re-
              <lb/>
            linquitur ergo, ut circumſcripta figura exuperet inſcriptã
              <lb/>
            priſmate, quod baſim habet a b c triangulum, & </s>
            <s xml:space="preserve">axem e f.
              <lb/>
            </s>
            <s xml:space="preserve">Illud uero minus eſt ſolida magnitudine propoſita. </s>
            <s xml:space="preserve">Eadȩ
              <lb/>
            ratione inſcribetur, & </s>
            <s xml:space="preserve">circumſcribetur ſolida figura in py-
              <lb/>
            ramide, quæ quadrilateram, uel plurilaterã baſim habeat.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="76">
          <head xml:space="preserve">PROBLEMA II. PROPOSITIO XI.</head>
          <p>
            <s xml:space="preserve">
              <emph style="sc">Dato</emph>
            cono, fieri poteſt, ut figura ſolida in-
              <lb/>
            ſcribatur, & </s>
            <s xml:space="preserve">altera circumſcribatur ex cylindris
              <lb/>
            æqualem habentibus altitudinem, ita ut circum-
              <lb/>
            ſcripta ſuperet inſcriptam, magnitudine, quæ ſo-
              <lb/>
            lida magnitudine propoſita ſit minor.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">SIT conus, cuius axis b d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano per axem
              <lb/>
            ducto, ut ſectio ſit triangulum a b c: </s>
            <s xml:space="preserve">intelligaturq; </s>
            <s xml:space="preserve">cylin-
              <lb/>
            drus, qui baſim eandem, & </s>
            <s xml:space="preserve">eundem axem habeat. </s>
            <s xml:space="preserve">Hoc igi-
              <lb/>
            tur cylindro continenter bifariam ſecto, relinquetur cylin
              <lb/>
            drus minor ſolida magnitudine propoſita. </s>
            <s xml:space="preserve">Sit autem is cy
              <lb/>
            lindrus, qui baſim habet circulum circa diametrum a c, & </s>
            <s xml:space="preserve">
              <lb/>
            axem d e. </s>
            <s xml:space="preserve">Itaque diuidatur b d in partes æquales ipſi d e
              <lb/>
            in punctis f g h _K_lm: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per ea ducantur plana conum ſe-
              <lb/>
            cantia; </s>
            <s xml:space="preserve">quæ baſi æquidiſtent. </s>
            <s xml:space="preserve">erunt ſectiones circuli, cen-
              <lb/>
            tra in axi habentes, ut in primo libro conicorum, propoſi-</s>
          </p>
        </div>
      </text>
    </echo>