Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < (26) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="85">
          <p>
            <s xml:space="preserve">
              <pb o="26" file="0163" n="163" rhead="DE CENTRO GRAVIT. SOLID."/>
            matis a e axis g h; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">priſmatis a f axis l h. </s>
            <s xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma a f eam proportionem habere, quam g h ad
              <lb/>
            h l. </s>
            <s xml:space="preserve">ducantur à punctis g l perpendiculares ad baſis pla-
              <lb/>
            num g K, l m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur k h,
              <lb/>
              <anchor type="figure" xlink:label="fig-0163-01a" xlink:href="fig-0163-01"/>
            h m. </s>
            <s xml:space="preserve">Itaque quoniam anguli g h
              <lb/>
            k, l h m ſunt æquales, ſimiliter ut
              <lb/>
            ſupra demonſtrabimus, triangu-
              <lb/>
            la g h K, l h m ſimilia eſſe; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut g
              <lb/>
            K adlm, ita g h ad h l. </s>
            <s xml:space="preserve">habet au
              <lb/>
            tem priſma a e ad priſma a f ean
              <lb/>
            dem proportionem, quam altitu
              <lb/>
            do g k ad altitudinem l m, ſicuti
              <lb/>
            demonſtratum eſt. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">ean-
              <lb/>
            dem habebit, quam g h, ad h l. </s>
            <s xml:space="preserve">py
              <lb/>
            ramis igitur a b c d g ad pyrami-
              <lb/>
            dem a b c d l eandem proportio-
              <lb/>
            nem habebit, quam axis g h ad h l axem.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0163-01" xlink:href="fig-0163-01a">
              <image file="0163-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-01"/>
            </figure>
          </div>
          <figure>
            <image file="0163-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-02"/>
          </figure>
          <p>
            <s xml:space="preserve">Denique ſint priſmata a e, k o in æqualibus baſibus a b
              <lb/>
            c d, k l m n conſtituta; </s>
            <s xml:space="preserve">quorum axes cum baſibus æquales
              <lb/>
            faciant angulos: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">priſmatis a e axis f g, & </s>
            <s xml:space="preserve">altitudo f h:
              <lb/>
            </s>
            <s xml:space="preserve">priſmatis autem k o axis p q, & </s>
            <s xml:space="preserve">altitudo p r. </s>
            <s xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma k o ita eſſe, ut f g ad p q. </s>
            <s xml:space="preserve">iunctis enim g h,</s>
          </p>
        </div>
      </text>
    </echo>