Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="89">
          <p>
            <s xml:space="preserve">
              <pb file="0174" n="174" rhead="FED. COMMANDINI"/>
            per f planum baſibus æquidiſtans ducatur, ut ſit ſectio cir
              <lb/>
            culus, uel ellipſis circa diametrum f g. </s>
            <s xml:space="preserve">Dico ſectionem a b
              <lb/>
            ad ſectionem f g eandem proportionem habere, quam f g
              <lb/>
            ad ipſam c d. </s>
            <s xml:space="preserve">Simili enim ratione, qua ſupra, demonſtrabi-
              <lb/>
            tur quadratum a b ad quadratum f g ita eſſe, ut quadratũ
              <lb/>
            f g ad c d quadratum. </s>
            <s xml:space="preserve">Sed circuli inter ſe eandem propor-
              <lb/>
              <anchor type="note" xlink:label="note-0174-01a" xlink:href="note-0174-01"/>
            tionem habent, quam diametrorum quadrata. </s>
            <s xml:space="preserve">ellipſes au-
              <lb/>
            tem circa a b, f g, c d, quæ ſimiles ſunt, ut oſten dimus in cõ-
              <lb/>
            mentariis in principium libri Archimedis de conoidibus,
              <lb/>
            & </s>
            <s xml:space="preserve">ſphæroidibus, eam habẽt proportionem, quam quadrar
              <lb/>
            ta diametrorum, quæ eiuſdem rationis ſunt, ex corollaio-
              <lb/>
            ſeptimæ propoſitionis eiuſdem li-
              <lb/>
              <anchor type="figure" xlink:label="fig-0174-01a" xlink:href="fig-0174-01"/>
            bri. </s>
            <s xml:space="preserve">ellipſes enim nunc appello ip-
              <lb/>
            ſa ſpacia ellipſibus contenta. </s>
            <s xml:space="preserve">ergo
              <lb/>
            circulus, uel ellipſis a b ad circulũ,
              <lb/>
            uel ellipſim f g eam proportionem
              <lb/>
            habet, quam circulus, uel ellipſis
              <lb/>
            f g ad circulum uel ellipſim c d.
              <lb/>
            </s>
            <s xml:space="preserve">quod quidem facienduni propo-
              <lb/>
            ſuimus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="left" xlink:label="note-0174-01" xlink:href="note-0174-01a" xml:space="preserve">2. duode
              <lb/>
            cimi</note>
            <figure xlink:label="fig-0174-01" xlink:href="fig-0174-01a">
              <image file="0174-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0174-01"/>
            </figure>
          </div>
        </div>
        <div type="section" level="1" n="90">
          <head xml:space="preserve">THEOREMA XX. PROPOSITIO XXV.</head>
          <p>
            <s xml:space="preserve">
              <emph style="sc">Qvodlibet</emph>
            fruſtum pyramidis, uel coni,
              <lb/>
            uel coni portionis ad pyramidem, uel conum, uel
              <lb/>
            coni portionem, cuius baſis eadem eſt, & </s>
            <s xml:space="preserve">æqualis
              <lb/>
            altitudo, eandem proportionẽ habet, quam utræ
              <lb/>
            que baſes, maior, & </s>
            <s xml:space="preserve">minor ſimul ſumptæ vnà cũ
              <lb/>
            ea, quæ inter ipſas ſit proportionalis, ad baſim ma
              <lb/>
            iorem.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>