Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s4436
"
xml:space
="
preserve
">
<
pb
file
="
0178
"
n
="
178
"
rhead
="
FED. COMMANDINI
"/>
producantur. </
s
>
<
s
xml:id
="
echoid-s4437
"
xml:space
="
preserve
">Quoniam igitur pyramis ſecatur planis bafi
<
lb
/>
æquidiſtantibus, ſectiones ſimiles erunt: </
s
>
<
s
xml:id
="
echoid-s4438
"
xml:space
="
preserve
">atque erunt qua-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0178-01
"
xlink:href
="
note-0178-01a
"
xml:space
="
preserve
">9. huius</
note
>
drata, uel rectangula circa circulos, uel ellipſes deſcripta,
<
lb
/>
quemadmodum & </
s
>
<
s
xml:id
="
echoid-s4439
"
xml:space
="
preserve
">in ipſa baſi. </
s
>
<
s
xml:id
="
echoid-s4440
"
xml:space
="
preserve
">Sed cum circuli inter ſe eã
<
lb
/>
proportionem habeant, quam diametrorum quadrata:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4441
"
xml:space
="
preserve
">
<
note
position
="
left
"
xlink:label
="
note-0178-02
"
xlink:href
="
note-0178-02a
"
xml:space
="
preserve
">2. duode-
<
lb
/>
cimi.</
note
>
itemq; </
s
>
<
s
xml:id
="
echoid-s4442
"
xml:space
="
preserve
">ellipſes eam quam rectangula ex ipſarum diametris
<
lb
/>
conſtantia: </
s
>
<
s
xml:id
="
echoid-s4443
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4444
"
xml:space
="
preserve
">ſit circulus, uel ellipſis circa diametrum e f
<
lb
/>
<
figure
xlink:label
="
fig-0178-01
"
xlink:href
="
fig-0178-01a
"
number
="
133
">
<
image
file
="
0178-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0178-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0178-03
"
xlink:href
="
note-0178-03a
"
xml:space
="
preserve
">7. de co-
<
lb
/>
noidibus
<
lb
/>
& ſphæ-
<
lb
/>
roidibus</
note
>
proportionalis inter circulos, uel ellipſes a b, c d; </
s
>
<
s
xml:id
="
echoid-s4445
"
xml:space
="
preserve
">erit re-
<
lb
/>
ctangulum e f etiam inter rectangula a b, c d proportio-
<
lb
/>
nale: </
s
>
<
s
xml:id
="
echoid-s4446
"
xml:space
="
preserve
">per rectangulum enim nunc breuitatis cauſa etiã ip-
<
lb
/>
ſum quadratum intelligemus. </
s
>
<
s
xml:id
="
echoid-s4447
"
xml:space
="
preserve
">quare ex iis, quæ proxime
<
lb
/>
dicta ſunt, pyramis baſim habens æqualem dictis rectangu
<
lb
/>
lis, & </
s
>
<
s
xml:id
="
echoid-s4448
"
xml:space
="
preserve
">altitudinem eandem, quam fruſtum a d, ipſi fruſto à
<
lb
/>
pyramide abſciſſo æqualis probabitur. </
s
>
<
s
xml:id
="
echoid-s4449
"
xml:space
="
preserve
">ut autem rectangu
<
lb
/>
lum c d ad rectangulũ e f, ita circulus, uel ellipſis c d a d e f
<
lb
/>
circulum, uel ellipſim: </
s
>
<
s
xml:id
="
echoid-s4450
"
xml:space
="
preserve
">componendoq; </
s
>
<
s
xml:id
="
echoid-s4451
"
xml:space
="
preserve
">ut rectangula c d,
<
lb
/>
e f, ad e f rectangulum, ita circuli, uel ellipſes e d, e f, ad e f:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4452
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4453
"
xml:space
="
preserve
">ut rectangulum e f ad rectangulum a b, ita cir culus, uel
<
lb
/>
cllipſis e f ad a b circulum, uel ellipſim. </
s
>
<
s
xml:id
="
echoid-s4454
"
xml:space
="
preserve
">ergo ex æquali, & </
s
>
<
s
xml:id
="
echoid-s4455
"
xml:space
="
preserve
">
<
lb
/>
componendo, utrectãgula c d, e f, a b ad ipſum a b, ita </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>