Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < (34) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div263" type="section" level="1" n="90">
          <p>
            <s xml:id="echoid-s4455" xml:space="preserve">
              <pb o="34" file="0179" n="179" rhead="DE CENTRO GRAVIT. SOLID."/>
            culi, uel ellipſes c d, e ſ a b ad circulum, uel ellipſim a b. </s>
            <s xml:id="echoid-s4456" xml:space="preserve">In-
              <lb/>
            telligatur pyramis q baſim habens æqualem tribus rectan
              <lb/>
            gulis a b, e f, c d; </s>
            <s xml:id="echoid-s4457" xml:space="preserve">& </s>
            <s xml:id="echoid-s4458" xml:space="preserve">altitudinem eãdem, quam fruſtum a d.
              <lb/>
            </s>
            <s xml:id="echoid-s4459" xml:space="preserve">intelligatur etiam conus, uel coni portio q, eadem altitudi
              <lb/>
            ne, cuius baſis ſit tribus circulis, uel tribus ellipſibus a b,
              <lb/>
            e f, c d æqualis. </s>
            <s xml:id="echoid-s4460" xml:space="preserve">poſtremo intelligatur pyramis a l b, cuius
              <lb/>
            baſis ſit rectangulum m n o p, & </s>
            <s xml:id="echoid-s4461" xml:space="preserve">altitudo eadem, quæ fru-
              <lb/>
            ſti: </s>
            <s xml:id="echoid-s4462" xml:space="preserve">itemq, intelligatur conus, uel coni portio a l b, cuius
              <lb/>
            baſis circulus, uel ellipſis circa diametrum a b, & </s>
            <s xml:id="echoid-s4463" xml:space="preserve">eadem al
              <lb/>
            titudo. </s>
            <s xml:id="echoid-s4464" xml:space="preserve">ut igitur rectangula a b, e f, c d ad rectangulum a b,
              <lb/>
              <note position="right" xlink:label="note-0179-01" xlink:href="note-0179-01a" xml:space="preserve">6. 11. duo
                <lb/>
              decimi</note>
            ita pyramis q ad pyramidem a l b; </s>
            <s xml:id="echoid-s4465" xml:space="preserve">& </s>
            <s xml:id="echoid-s4466" xml:space="preserve">ut circuli, uel ellip-
              <lb/>
            ſes a b, e f, c d ad a b circulum, uel ellipſim, ita conus, uel co
              <lb/>
            ni portio q ad conum, uel coni portionem a l b. </s>
            <s xml:id="echoid-s4467" xml:space="preserve">conus
              <lb/>
            igitur, uel coni portio q ad conum, uel coni portionem
              <lb/>
            a l b eſt, ut pyramis q ad pyramidem a l b. </s>
            <s xml:id="echoid-s4468" xml:space="preserve">ſed pyramis
              <lb/>
            a l b ad pyramidem a g b eſt, ut altitudo ad altitudinem, ex
              <lb/>
            20. </s>
            <s xml:id="echoid-s4469" xml:space="preserve">huius: </s>
            <s xml:id="echoid-s4470" xml:space="preserve">& </s>
            <s xml:id="echoid-s4471" xml:space="preserve">ita eſt conus, uel coni portio al b ad conum,
              <lb/>
            uel coni portionem a g b ex 14. </s>
            <s xml:id="echoid-s4472" xml:space="preserve">duodecimi elementorum,
              <lb/>
            & </s>
            <s xml:id="echoid-s4473" xml:space="preserve">ex iis, quæ nos demonſtrauimus in commentariis in un-
              <lb/>
            decimam de conoidibus, & </s>
            <s xml:id="echoid-s4474" xml:space="preserve">ſphæroidibus, propoſitione
              <lb/>
            quarta. </s>
            <s xml:id="echoid-s4475" xml:space="preserve">pyramis autem a g b ad pyramidem c g d propor-
              <lb/>
            tionem habet compoſitam ex proportione baſium & </s>
            <s xml:id="echoid-s4476" xml:space="preserve">pro
              <lb/>
            portione altitudinum, ex uigeſima prima huius: </s>
            <s xml:id="echoid-s4477" xml:space="preserve">& </s>
            <s xml:id="echoid-s4478" xml:space="preserve">ſimili-
              <lb/>
            ter conus, uel coni portio a g b a d conum, uel coni portio-
              <lb/>
            nem c g d proportionem habet compoſitã ex eiſdem pro-
              <lb/>
            portionibus, per ea, quæ in dictis commentariis demon-
              <lb/>
            ſtrauimus, propoſitione quinta, & </s>
            <s xml:id="echoid-s4479" xml:space="preserve">ſexta: </s>
            <s xml:id="echoid-s4480" xml:space="preserve">altitudo enim in
              <lb/>
            utriſque eadem eſt, & </s>
            <s xml:id="echoid-s4481" xml:space="preserve">baſes inter ſe ſe eandem habent pro-
              <lb/>
            portionem. </s>
            <s xml:id="echoid-s4482" xml:space="preserve">ergo ut pyramis a g b ad pyramidem c g d, ita
              <lb/>
            eſt conus, uel coni portio a g b ad a g d conum, uel coni
              <lb/>
            portionem: </s>
            <s xml:id="echoid-s4483" xml:space="preserve">& </s>
            <s xml:id="echoid-s4484" xml:space="preserve">per conuerſionẽ rationis, ut pyramis a g b
              <lb/>
            ad fruſtū à pyramide abſciſſum, ita conus uel coni portio
              <lb/>
            a g b ad fruſtum a d. </s>
            <s xml:id="echoid-s4485" xml:space="preserve">ex æquali igitur, ut pyramis q ad fru-
              <lb/>
            ſtum à pyramide abſciſſum, ita conus uel coni portio q </s>
          </p>
        </div>
      </text>
    </echo>