Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(34)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s4455
"
xml:space
="
preserve
">
<
pb
o
="
34
"
file
="
0179
"
n
="
179
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
culi, uel ellipſes c d, e ſ a b ad circulum, uel ellipſim a b. </
s
>
<
s
xml:id
="
echoid-s4456
"
xml:space
="
preserve
">In-
<
lb
/>
telligatur pyramis q baſim habens æqualem tribus rectan
<
lb
/>
gulis a b, e f, c d; </
s
>
<
s
xml:id
="
echoid-s4457
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4458
"
xml:space
="
preserve
">altitudinem eãdem, quam fruſtum a d.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4459
"
xml:space
="
preserve
">intelligatur etiam conus, uel coni portio q, eadem altitudi
<
lb
/>
ne, cuius baſis ſit tribus circulis, uel tribus ellipſibus a b,
<
lb
/>
e f, c d æqualis. </
s
>
<
s
xml:id
="
echoid-s4460
"
xml:space
="
preserve
">poſtremo intelligatur pyramis a l b, cuius
<
lb
/>
baſis ſit rectangulum m n o p, & </
s
>
<
s
xml:id
="
echoid-s4461
"
xml:space
="
preserve
">altitudo eadem, quæ fru-
<
lb
/>
ſti: </
s
>
<
s
xml:id
="
echoid-s4462
"
xml:space
="
preserve
">itemq, intelligatur conus, uel coni portio a l b, cuius
<
lb
/>
baſis circulus, uel ellipſis circa diametrum a b, & </
s
>
<
s
xml:id
="
echoid-s4463
"
xml:space
="
preserve
">eadem al
<
lb
/>
titudo. </
s
>
<
s
xml:id
="
echoid-s4464
"
xml:space
="
preserve
">ut igitur rectangula a b, e f, c d ad rectangulum a b,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0179-01
"
xlink:href
="
note-0179-01a
"
xml:space
="
preserve
">6. 11. duo
<
lb
/>
decimi</
note
>
ita pyramis q ad pyramidem a l b; </
s
>
<
s
xml:id
="
echoid-s4465
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4466
"
xml:space
="
preserve
">ut circuli, uel ellip-
<
lb
/>
ſes a b, e f, c d ad a b circulum, uel ellipſim, ita conus, uel co
<
lb
/>
ni portio q ad conum, uel coni portionem a l b. </
s
>
<
s
xml:id
="
echoid-s4467
"
xml:space
="
preserve
">conus
<
lb
/>
igitur, uel coni portio q ad conum, uel coni portionem
<
lb
/>
a l b eſt, ut pyramis q ad pyramidem a l b. </
s
>
<
s
xml:id
="
echoid-s4468
"
xml:space
="
preserve
">ſed pyramis
<
lb
/>
a l b ad pyramidem a g b eſt, ut altitudo ad altitudinem, ex
<
lb
/>
20. </
s
>
<
s
xml:id
="
echoid-s4469
"
xml:space
="
preserve
">huius: </
s
>
<
s
xml:id
="
echoid-s4470
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4471
"
xml:space
="
preserve
">ita eſt conus, uel coni portio al b ad conum,
<
lb
/>
uel coni portionem a g b ex 14. </
s
>
<
s
xml:id
="
echoid-s4472
"
xml:space
="
preserve
">duodecimi elementorum,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4473
"
xml:space
="
preserve
">ex iis, quæ nos demonſtrauimus in commentariis in un-
<
lb
/>
decimam de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s4474
"
xml:space
="
preserve
">ſphæroidibus, propoſitione
<
lb
/>
quarta. </
s
>
<
s
xml:id
="
echoid-s4475
"
xml:space
="
preserve
">pyramis autem a g b ad pyramidem c g d propor-
<
lb
/>
tionem habet compoſitam ex proportione baſium & </
s
>
<
s
xml:id
="
echoid-s4476
"
xml:space
="
preserve
">pro
<
lb
/>
portione altitudinum, ex uigeſima prima huius: </
s
>
<
s
xml:id
="
echoid-s4477
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4478
"
xml:space
="
preserve
">ſimili-
<
lb
/>
ter conus, uel coni portio a g b a d conum, uel coni portio-
<
lb
/>
nem c g d proportionem habet compoſitã ex eiſdem pro-
<
lb
/>
portionibus, per ea, quæ in dictis commentariis demon-
<
lb
/>
ſtrauimus, propoſitione quinta, & </
s
>
<
s
xml:id
="
echoid-s4479
"
xml:space
="
preserve
">ſexta: </
s
>
<
s
xml:id
="
echoid-s4480
"
xml:space
="
preserve
">altitudo enim in
<
lb
/>
utriſque eadem eſt, & </
s
>
<
s
xml:id
="
echoid-s4481
"
xml:space
="
preserve
">baſes inter ſe ſe eandem habent pro-
<
lb
/>
portionem. </
s
>
<
s
xml:id
="
echoid-s4482
"
xml:space
="
preserve
">ergo ut pyramis a g b ad pyramidem c g d, ita
<
lb
/>
eſt conus, uel coni portio a g b ad a g d conum, uel coni
<
lb
/>
portionem: </
s
>
<
s
xml:id
="
echoid-s4483
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4484
"
xml:space
="
preserve
">per conuerſionẽ rationis, ut pyramis a g b
<
lb
/>
ad fruſtū à pyramide abſciſſum, ita conus uel coni portio
<
lb
/>
a g b ad fruſtum a d. </
s
>
<
s
xml:id
="
echoid-s4485
"
xml:space
="
preserve
">ex æquali igitur, ut pyramis q ad fru-
<
lb
/>
ſtum à pyramide abſciſſum, ita conus uel coni portio q </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>