Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb file="0188" n="188" rhead="FED. COMMANDINI"/>
            At cum e f ſit ſexta pars axis
              <lb/>
              <anchor type="figure" xlink:label="fig-0188-01a" xlink:href="fig-0188-01"/>
            ſphæræ, crit d e tripla e f. </s>
            <s xml:space="preserve">ergo
              <lb/>
            punctum e eſt grauitatis cen-
              <lb/>
            trum ipſius pyramidis: </s>
            <s xml:space="preserve">quod
              <lb/>
            in uigeſima ſecunda huius de-
              <lb/>
            monſtratum fuit. </s>
            <s xml:space="preserve">Sed e eſt cen
              <lb/>
            trum ſphæræ. </s>
            <s xml:space="preserve">Sequitur igitur,
              <lb/>
            ut centrum grauitatis pyrami-
              <lb/>
            dis in ſphæra deſcriptæ idem
              <lb/>
            ſit, quod ipſius ſphæræ cen-
              <lb/>
            trum.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0188-01" xlink:href="fig-0188-01a">
              <image file="0188-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit cubus in ſphæra deſcriptus a b, & </s>
            <s xml:space="preserve">oppoſitorum pla-
              <lb/>
            norum lateribus bifariam diuiſis, per puncta diuiſionum
              <lb/>
            plana ducantur, ut communis ipſorum ſectio ſit recta li-
              <lb/>
            nea c d. </s>
            <s xml:space="preserve">Itaque ſi ducatur a b, ſolidi ſcilicet diameter, lineæ
              <lb/>
            a b, c d ex trigeſimanona undecimi ſeſe bifariam ſecabunt.
              <lb/>
            </s>
            <s xml:space="preserve">ſecent autem in puncto e. </s>
            <s xml:space="preserve">erit
              <lb/>
              <anchor type="figure" xlink:label="fig-0188-02a" xlink:href="fig-0188-02"/>
            e centrũ grauitatis ſolidi a b,
              <lb/>
            id quod demonſtratum eſt in
              <lb/>
            octaua huius. </s>
            <s xml:space="preserve">Sed quoniam ab
              <lb/>
            eſt ſphæræ diametro æqualis,
              <lb/>
            ut in decima quinta propoſi-
              <lb/>
            tione tertii decimi libri elemẽ
              <lb/>
            torum oſtenditur: </s>
            <s xml:space="preserve">punctum e
              <lb/>
            ſphæræ quoque centrum erit.
              <lb/>
            </s>
            <s xml:space="preserve">Cubi igitur in ſphæra deſcri-
              <lb/>
            pti grauitatis centrum idem
              <lb/>
            eſt, quod centrum ipſius ſphæræ.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0188-02" xlink:href="fig-0188-02a">
              <image file="0188-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-02"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit octahedrum a b c d e f, in ſphæra deſcriptum, cuius
              <lb/>
            ſphæræ centrum ſit g. </s>
            <s xml:space="preserve">Dico punctum g ipſius octahedri
              <lb/>
            grauitatis centrum eſſe. </s>
            <s xml:space="preserve">Conſtat enim ex iis, quæ demon-
              <lb/>
            ſtrata ſunt à Campano in quinto decimo libro elemento-
              <lb/>
            rum, propoſitione ſextadecima eiuſimodi ſolidum diuidi
              <lb/>
            in duas pyramides æquales, & </s>
            <s xml:space="preserve">ſimiles; </s>
            <s xml:space="preserve">uidelicetin pyrami-</s>
          </p>
        </div>
      </text>
    </echo>