Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div278" type="section" level="1" n="93">
          <p>
            <s xml:id="echoid-s4878" xml:space="preserve">
              <pb file="0194" n="194" rhead="FED. COMMANDINI"/>
            tionem cadet: </s>
            <s xml:id="echoid-s4879" xml:space="preserve">Itaque cum à portione conoidis, cuius gra-
              <lb/>
            uitatis centrum e auferatur inſcripta figura, centrum ha-
              <lb/>
            bens p: </s>
            <s xml:id="echoid-s4880" xml:space="preserve">& </s>
            <s xml:id="echoid-s4881" xml:space="preserve">ſit l e ad e p, ut figura inſcripta ad portiones reli
              <lb/>
            quas: </s>
            <s xml:id="echoid-s4882" xml:space="preserve">erit magnitudinis, quæ ex reliquis portionibus con
              <lb/>
            ſtat, centrum grauitatis punctum l, extra portionem ca-
              <lb/>
            dens. </s>
            <s xml:id="echoid-s4883" xml:space="preserve">quod fieri nequit. </s>
            <s xml:id="echoid-s4884" xml:space="preserve">ergo linea p e minor eſt ip ſa g li-
              <lb/>
            nea propoſita.</s>
            <s xml:id="echoid-s4885" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4886" xml:space="preserve">Ex quibus perſpicuum eſt centrum grauitatis
              <lb/>
            figuræ inſcriptæ, & </s>
            <s xml:id="echoid-s4887" xml:space="preserve">circumſcriptæ eo magis acce
              <lb/>
            dere ad portionis centrum, quo pluribus cylin-
              <lb/>
            dris, uel cylindri portionibus conſtet: </s>
            <s xml:id="echoid-s4888" xml:space="preserve">fiatq́ figu
              <lb/>
            ra inſcripta maior, & </s>
            <s xml:id="echoid-s4889" xml:space="preserve">circumſcripta minor. </s>
            <s xml:id="echoid-s4890" xml:space="preserve">& </s>
            <s xml:id="echoid-s4891" xml:space="preserve">
              <lb/>
            quanquam continenter ad portionis centrū pro-
              <lb/>
            pius admoueatur nunquam tamen ad ipſum per
              <lb/>
            ueniet. </s>
            <s xml:id="echoid-s4892" xml:space="preserve">ſequeretur enim figuram inſcriptam, nó
              <lb/>
            ſolum portioni, ſed etiam circumſcriptæ figuræ
              <lb/>
            æqualem eſſe. </s>
            <s xml:id="echoid-s4893" xml:space="preserve">quod eſt abſurdum.</s>
            <s xml:id="echoid-s4894" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div281" type="section" level="1" n="94">
          <head xml:id="echoid-head101" xml:space="preserve">THE OREMA XXIII. PROPOSITIO XXIX.</head>
          <p>
            <s xml:id="echoid-s4895" xml:space="preserve">
              <emph style="sc">Cvivslibet</emph>
            portionis conoidis rectangu-
              <lb/>
            li axis à cẽtro grauitatis ita diuiditur, ut pars quæ
              <lb/>
            terminatur ad uerticem, reliquæ partis, quæ ad ba
              <lb/>
            ſim ſit dupla.</s>
            <s xml:id="echoid-s4896" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4897" xml:space="preserve">SIT portio conoidis rectanguli uel abſciſſa plano ad
              <lb/>
            axem recto, uel non recto: </s>
            <s xml:id="echoid-s4898" xml:space="preserve">& </s>
            <s xml:id="echoid-s4899" xml:space="preserve">ſecta ipſa altero plano per axé
              <lb/>
            ſit ſuperſiciei ſe ctio a b c r ectanguli coni ſectio, uel parabo
              <lb/>
            le; </s>
            <s xml:id="echoid-s4900" xml:space="preserve">plani abſcindentis portionem ſectio ſit recta linea a c:
              <lb/>
            </s>
            <s xml:id="echoid-s4901" xml:space="preserve">axis portionis, & </s>
            <s xml:id="echoid-s4902" xml:space="preserve">ſectionis diameter b d. </s>
            <s xml:id="echoid-s4903" xml:space="preserve">Sumatur autem
              <lb/>
            in linea b d punctum e, ita ut b e ſit ipſius e d dupla. </s>
            <s xml:id="echoid-s4904" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>