Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
ARCHIMEDIS
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="42">
          <pb file="0074" n="74" rhead="ARCHIMEDIS"/>
        </div>
        <div type="section" level="1" n="43">
          <head xml:space="preserve">LEMMA II.</head>
          <p style="it">
            <s xml:space="preserve">Sint duæ portionis ſimiles, contentæ rectis lineis, & </s>
            <s xml:space="preserve">
              <lb/>
            rectangulorum conorum ſectionibus; </s>
            <s xml:space="preserve">a b c quidem ma-
              <lb/>
            ior, cuius diameter b d; </s>
            <s xml:space="preserve">e f c uero minor, cuius diameter
              <lb/>
            fg: </s>
            <s xml:space="preserve">aptenturq; </s>
            <s xml:space="preserve">inter ſeſe, ita ut maior minorem includat
              <lb/>
            & </s>
            <s xml:space="preserve">ſint earum baſes a c, e c in eadem recta linea, ut idẽ
              <lb/>
            punctum c ſit utriuſque terminus: </s>
            <s xml:space="preserve">ſumatur deinde in ſe
              <lb/>
            ctione a b c quodlibet punctum b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungatur h c. </s>
            <s xml:space="preserve">Di
              <lb/>
            co lineam h c ad partem ſui ipſius, quæ inter c, & </s>
            <s xml:space="preserve">ſe-
              <lb/>
            ctionem e f c interiicitur, eam proportionẽ habere, quam
              <lb/>
            habet a c ad c e.</s>
            <s xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:space="preserve">_
              <emph style="sc">Dvcatvr</emph>
            _ b c, quæ tranſibit per f. </s>
            <s xml:space="preserve">quoniam enim portiones
              <lb/>
            ſimiles ſunt, diametri cú baſibus æquales continent angulos. </s>
            <s xml:space="preserve">quare
              <lb/>
            æquidiſtant inter ſe ſe b d, f g: </s>
            <s xml:space="preserve">éſtq; </s>
            <s xml:space="preserve">b d ad a c, ut f g ad e c:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">permu-
              <lb/>
              <anchor type="figure" xlink:label="fig-0074-01a" xlink:href="fig-0074-01"/>
            tando b d ad
              <lb/>
            f g, ut a c ad
              <lb/>
            c e: </s>
            <s xml:space="preserve">hoc eſt
              <lb/>
              <anchor type="note" xlink:label="note-0074-01a" xlink:href="note-0074-01"/>
            ut earum di-
              <lb/>
            midiæ d c ad
              <lb/>
            c g. </s>
            <s xml:space="preserve">ergo ex
              <lb/>
            antecedēti lé
              <lb/>
            mate ſequi-
              <lb/>
            tur lineá b c
              <lb/>
            per punctum
              <lb/>
            f tranſire.
              <lb/>
            </s>
            <s xml:space="preserve">Ducatur præ
              <lb/>
            terea à puncto h ad diametrum b d linea h K, æquidiſtans baſi
              <lb/>
            a c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta k c, quæ diametrum f g ſecet in l; </s>
            <s xml:space="preserve">per l ducatur</s>
          </p>
        </div>
      </text>
    </echo>