Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < of 213 > >|
132FED. COMMANDINI centrum z: parallelogram mi a d, θ: parallelogrammi f g, φ:
parallelogrammi d h, χ: &
88[Figure 88] parallelogrammi c g centrũ
ψ:
atque erit ω punctum me
dium uniuſcuiuſque axis, ui
delicet eius lineæ, quæ oppo
ſitorum planorũ centra con
iungit.
Dico ω centrum effe
grauitatis ipſius ſolidi.
eſt
enim, ut demonſtrauimus,
116. huius ſolidi a f centrum grauitatis
in plano K n;
quod oppoſi-
tis planis a d, g f æ quidiſtans
reliquorum planorum late-
ra biſariam diuidit:
& fimili
rationeidem centrum eſt in plano o r, æ quidiſtante planis
a e, b f oppo ſitis.
ergo in communi ipſorum fectione: ui-
delicet in linea y z.
Sed eſt etiam in plano t u, quod quidẽ
y z ſecat in ω.
Conſtat igitur centrum grauitatis ſolidi eſſe
punctum ω, medium ſcilicet axium, hoc eſt linearum, quæ
planorum oppoſitorum centra coniungunt.
Sit aliud prima a f; & in eo plana, quæ opponuntur, tri-
angula a b c, d e f:
diuiſisq; bifariam parallelogrammorum
lateribus a d, b e, c f in punctis g h κ, per diuiſiones planũ
ducatur, quod oppoſitis planis æ quidiſtans faciet ſe ctionẽ
triangulum g h k æ quale, &
ſimile ipſis a b c, d e f. Rurſus
diuidatur a b bifariam in l:
& iuncta c l per ipſam, & per
c _K_ f planum ducatur priſma ſecans, cuius, &
parallelogrã
mi a e communis ſcctio ſit l m n.
diuidet pun ctum m li-
neam g h bifariam;
& ita n diuidet lineam d e: quoniam
triangula a c l, g k m, d f n æ qualia ſunt, &
ſimilia, ut ſu pra
225. huius demonſtrauimus.
Iam ex iis, quæ tradita ſunt, conſtat cen
trum greuitatis priſmatis in plano g h k contineri.
Dico
ipſum eſſe in linea k m.
Si enim fieri poteſt, ſit o centrum;

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index