Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < (10) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
æqualis magnitudini f a; ſitq, ipſi f æqualis n: & ipſi a æ-
qualis i.
magnitudinis autem f a grauitas ſit b: & magni-
tudinis n i grauitas o r;
& ipſius i ſit r. magnitudo igi-
tur f a ad n i eam proportionem habet, quam grauitas b
ad grauitatem or.
Sed quoniam magnitudo f a in humi-
dum demiſſa leuior eſt humido;
patet tantam humidi mo-
lem, quanta eſt pars magnitudin_i_s demerſa, eandem quam
magnitudo f a habere grauitatem.
hoc enim ſuperius de-
5. priml
huius.
monſtratum eſt.
Atipſi a reſpondet humidum i, cuius qui
dem grauitas eſt r;
& ipſius f a grauitas b. ergo b graui-
tas eius, quod habet molem æqualem toti magnitudini
f a, æqualis erit grauitati humidi i, uidelicetipſi r.
Et quo
niam ut magnitudo f a ad humidum n i ſibi reſpondens,
ita eſt b ad o r:
eſt autem b æqualis ipſi r: & utr ad o r, ita
i ad n i;
& a ad f a. Sequitur ut f a ad humidum æqualis
11. quintamolis eam in grauitate proportionem habeat, quam ma-
gnitudo a habet ad f a.
quod demonſtrare oportebat.

PROPOSITIO II.

Recta portio conoidis rectanguli, quando
Aaxem habuerit minorem, quam ſeſquialterum
eius, quæ uſque ad axem, quamcunque propor-
tionem habens ad humidum in grauitate;
demiſ
ſa in humidum, ita ut baſis ipſius humidum non
contingat;
& poſita inelinata, non manebit incli
nata;
ſed recta reſtituetur. Rectam dico conſi-
ſtere talem portionem, quando planum quod ip
ſam ſecuit, ſuperficiei humidi fuerit æquidiſtans.
SIT portio rectanguli conoidis, qualis dicta eſt; & ia-

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index