Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="68">
          <p>
            <s xml:space="preserve">
              <pb file="0124" n="124" rhead="FED. COMMANDINI"/>
            in linea e b punctũ g, it aut ſit g e æqualis e f. </s>
            <s xml:space="preserve">erit g por-
              <lb/>
            tionis a b c centrum. </s>
            <s xml:space="preserve">nam ſi hæ portiones, quæ æquales
              <lb/>
            & </s>
            <s xml:space="preserve">ſimiles ſunt, inter ſe ſe aptentur, ita ut b e cadat in d e,
              <lb/>
            & </s>
            <s xml:space="preserve">punctum b in d cadet, & </s>
            <s xml:space="preserve">g in f: </s>
            <s xml:space="preserve">figuris autem æquali-
              <lb/>
            bus, & </s>
            <s xml:space="preserve">ſimilibus inter ſe aptatis, centra quoque grauitatis
              <lb/>
            ipſarum inter ſe aptata erunt, ex quinta petitione Archi-
              <lb/>
            medis in libro de centro grauitatis planorum. </s>
            <s xml:space="preserve">Quare cum
              <lb/>
            portionis a d c centrum grauitatis ſit ſ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">portionis
              <lb/>
            a b c centrum g: </s>
            <s xml:space="preserve">magnitudinis; </s>
            <s xml:space="preserve">quæ ex utriſque efficitur:
              <lb/>
            </s>
            <s xml:space="preserve">hoc eſt circuli uel ellipſis grauitatis centrum in medio li-
              <lb/>
            neæ f g, quod eſt e, conſiſtet, ex quarta propoſitione eiuſ-
              <lb/>
            dem libri Archimedis. </s>
            <s xml:space="preserve">ergo circuli, uel ellipſis centrum
              <lb/>
            grauitatis eſt idem, quod figuræ centrum. </s>
            <s xml:space="preserve">atque illud eſt,
              <lb/>
            quod demonſtrare oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0123-02" xlink:href="fig-0123-02a">
              <image file="0123-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0123-02"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Ex quibus ſequitur portionis circuli, uel ellip-
              <lb/>
            ſis, quæ dimidia maior ſit, centrum grauitatis in
              <lb/>
            diametro quoque ipſius conſiſtere.</s>
            <s xml:space="preserve"/>
          </p>
          <figure>
            <image file="0124-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0124-01"/>
          </figure>
          <p>
            <s xml:space="preserve">Sit enim maior portio a b c, cu_i_us diameter b d, & </s>
            <s xml:space="preserve">com-
              <lb/>
            pleatur circulus, uel ellipſis, ut portio reliqua ſit a e c, dia</s>
          </p>
        </div>
      </text>
    </echo>