Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0134" n="134" rhead="FED. COMMANDINI"/>
            t u, x y ipſi g h æquidiſtare. </s>
            <s xml:space="preserve">Et quoniam triangula, quæ
              <lb/>
            fiunt à lineis K y, y u, u s, s h æqualia ſuntinter ſe, & </s>
            <s xml:space="preserve">ſimilia
              <lb/>
            triangulo K m h: </s>
            <s xml:space="preserve">habebit triangulum K m h ad triangulũ
              <lb/>
              <anchor type="note" xlink:label="note-0134-01a" xlink:href="note-0134-01"/>
            K δ y duplam proportionem eius, quæ eſt lineæ k h ad K y.
              <lb/>
            </s>
            <s xml:space="preserve">ſed _K_ h poſita eſt quadrupla ipſius k y. </s>
            <s xml:space="preserve">ergo triangulum
              <lb/>
            κ m h ad triangulum _K_ δ y eãdem proportionem habebit,
              <lb/>
            quam ſexdecim ad unũ & </s>
            <s xml:space="preserve">ad quatuor triangula k δ y, y u,
              <lb/>
            u s, s α h habebit eandem, quam fexdecim ad quatuor, hoc
              <lb/>
            eſt quam h K ad κ y: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſimiliter eandem habere demonſtra
              <lb/>
            bitur trian-
              <lb/>
              <anchor type="figure" xlink:label="fig-0134-01a" xlink:href="fig-0134-01"/>
            gulum κ m g
              <lb/>
            ad quatuor
              <lb/>
            triãgula K δ
              <lb/>
            x, x γ t, t β r,
              <lb/>
            r z g. </s>
            <s xml:space="preserve">quare
              <lb/>
              <anchor type="note" xlink:label="note-0134-02a" xlink:href="note-0134-02"/>
            totum trian
              <lb/>
            gulum K g h
              <lb/>
            ad omnia tri
              <lb/>
            angula g z r,
              <lb/>
            r β t, t γ x, x δ
              <lb/>
            _K_, K δ y, y u,
              <lb/>
            u s, s α h ita
              <lb/>
            erit, ut h κ a d
              <lb/>
            k y, hoc eſt
              <lb/>
            ut h m ad m
              <lb/>
            q. </s>
            <s xml:space="preserve">Si igitur in
              <lb/>
            triangulis a b c, d e f deſcribantur figuræ ſimiles ei, quæ de-
              <lb/>
            ſcripta eſt in g h K triangulo: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per lineas ſibi reſp onden-
              <lb/>
            tes plana ducantur: </s>
            <s xml:space="preserve">totum priſma a f diuiſum eritin tria
              <lb/>
            ſolida parallelepipeda y γ, u β, s z, quorum baſes ſunt æ qua
              <lb/>
            les & </s>
            <s xml:space="preserve">ſimiles ipſis parallelogrammis y γ, u β, s z: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in octo
              <lb/>
            priſmata g z r, r β t, t γ x, x δ K, κ δ y, y u, u s, s α h: </s>
            <s xml:space="preserve">quorum
              <lb/>
            item baſes æquales, & </s>
            <s xml:space="preserve">ſimiles ſunt dictis triangulis; </s>
            <s xml:space="preserve">altitu-
              <lb/>
            do autem in omnibus, totius priſmatis altitudini æ qualis.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>