Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div258
"
type
="
section
"
level
="
1
"
n
="
88
">
<
p
>
<
s
xml:id
="
echoid-s4303
"
xml:space
="
preserve
">
<
pb
file
="
0172
"
n
="
172
"
rhead
="
FED. COMMANDINI
"/>
Dico eas proportion ales eſſe in proportione, quæ eſt la-
<
lb
/>
teris a b adlatus d e, itaut earum maior ſit a b c e, me-
<
lb
/>
dia a d c e, & </
s
>
<
s
xml:id
="
echoid-s4304
"
xml:space
="
preserve
">minor d e f c. </
s
>
<
s
xml:id
="
echoid-s4305
"
xml:space
="
preserve
">Quoniam enim lineæ d e,
<
lb
/>
a b æquidiſtant; </
s
>
<
s
xml:id
="
echoid-s4306
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4307
"
xml:space
="
preserve
">interipſas ſunt triangula a b e, a d e;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4308
"
xml:space
="
preserve
">erit triangulum a b e
<
lb
/>
<
figure
xlink:label
="
fig-0172-01
"
xlink:href
="
fig-0172-01a
"
number
="
126
">
<
image
file
="
0172-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0172-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0172-01
"
xlink:href
="
note-0172-01a
"
xml:space
="
preserve
">1. ſextí.</
note
>
ad triangulum a d e,
<
lb
/>
ut linea a b ad lineam
<
lb
/>
d e. </
s
>
<
s
xml:id
="
echoid-s4309
"
xml:space
="
preserve
">ut autem triangu
<
lb
/>
lum a b e ad triangu-
<
lb
/>
lum a d e, ita pyramis
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0172-02
"
xlink:href
="
note-0172-02a
"
xml:space
="
preserve
">5. duodeci
<
lb
/>
mi.</
note
>
a b e c ad pyramidem
<
lb
/>
a d e c: </
s
>
<
s
xml:id
="
echoid-s4310
"
xml:space
="
preserve
">habent enim
<
lb
/>
altitudinem eandem,
<
lb
/>
quæ eſt à puncto c ad
<
lb
/>
planum, in quo qua-
<
lb
/>
drilaterum a b e d. </
s
>
<
s
xml:id
="
echoid-s4311
"
xml:space
="
preserve
">er-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0172-03
"
xlink:href
="
note-0172-03a
"
xml:space
="
preserve
">11. quinti.</
note
>
go ut a b ad d e, ita pyramis a b e c ad pyramidem a d e c.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4312
"
xml:space
="
preserve
">Rurſus quoniam æquidiſtantes ſunt a c, d f; </
s
>
<
s
xml:id
="
echoid-s4313
"
xml:space
="
preserve
">erit eadem
<
lb
/>
ratione pyramis a d c e ad pyramidem c d f e, ut a c ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0172-04
"
xlink:href
="
note-0172-04a
"
xml:space
="
preserve
">4 ſexti.</
note
>
d f. </
s
>
<
s
xml:id
="
echoid-s4314
"
xml:space
="
preserve
">Sed ut a c a l d f, ita a b ad d e, quoniam triangula
<
lb
/>
a b c, d e f ſimilia ſunt, ex nona huius. </
s
>
<
s
xml:id
="
echoid-s4315
"
xml:space
="
preserve
">quare ut pyramis
<
lb
/>
a b c e ad pyramidem a d c e, ita pyramis a d c e ad ipſam
<
lb
/>
d e f c. </
s
>
<
s
xml:id
="
echoid-s4316
"
xml:space
="
preserve
">fruſtum igitur a b c d e f diuiditur in tres pyramides
<
lb
/>
proportionales in ea proportione, quæ eſt lateris a b ad d e
<
lb
/>
latus, & </
s
>
<
s
xml:id
="
echoid-s4317
"
xml:space
="
preserve
">earum maior eſt c a b e, media a d c e, & </
s
>
<
s
xml:id
="
echoid-s4318
"
xml:space
="
preserve
">minor
<
lb
/>
d e f c. </
s
>
<
s
xml:id
="
echoid-s4319
"
xml:space
="
preserve
">quod demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s4320
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div260
"
type
="
section
"
level
="
1
"
n
="
89
">
<
head
xml:id
="
echoid-head96
"
xml:space
="
preserve
">PROBLEMA V. PROPOSITIO XXIIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4321
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Qvodlibet</
emph
>
fruſtum pyramidis, uel coni,
<
lb
/>
uel coni portionis, plano baſi æquidiſtanti ita ſe-
<
lb
/>
care, ut ſectio ſit proportionalis inter maiorem,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4322
"
xml:space
="
preserve
">minorem baſim.</
s
>
<
s
xml:id
="
echoid-s4323
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>