Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < (31) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div260" type="section" level="1" n="89">
          <pb o="31" file="0173" n="173" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:id="echoid-s4324" xml:space="preserve">SIT fruſtum pyramidis a e, cuius maior baſis triangu-
              <lb/>
            lum a b c, minor d e f: </s>
            <s xml:id="echoid-s4325" xml:space="preserve">& </s>
            <s xml:id="echoid-s4326" xml:space="preserve">oporteat ipſum plano, quod baſi
              <lb/>
            æquidiſtet, ita ſecare, ut ſectio ſit proportionalis inter triã
              <lb/>
            gula a b c, d e f. </s>
            <s xml:id="echoid-s4327" xml:space="preserve">Inueniatur inter lineas a b, d e media pro-
              <lb/>
            portionalis, quæ ſit b g: </s>
            <s xml:id="echoid-s4328" xml:space="preserve">& </s>
            <s xml:id="echoid-s4329" xml:space="preserve">à puncto g erigatur g h æquidi-
              <lb/>
            ſtans b e, ſecansq; </s>
            <s xml:id="echoid-s4330" xml:space="preserve">a d in h: </s>
            <s xml:id="echoid-s4331" xml:space="preserve">deinde per h ducatur planum
              <lb/>
            baſibus æ quidiſtans, cuius ſectio ſit triangulum h _k_ 1. </s>
            <s xml:id="echoid-s4332" xml:space="preserve">Dico
              <lb/>
            triangulum h K l proportionale eſſe inter triangula a b c,
              <lb/>
            d e f, hoc eſt triangulum a b c ad
              <lb/>
              <figure xlink:label="fig-0173-01" xlink:href="fig-0173-01a" number="127">
                <image file="0173-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0173-01"/>
              </figure>
            triangulum h K l eandem habere
              <lb/>
            proportionem, quam triãgulum
              <lb/>
            h K l ad ipſum d e f. </s>
            <s xml:id="echoid-s4333" xml:space="preserve">Quoniã enim
              <lb/>
            lineæ a b, h K æquidiſtantium pla
              <lb/>
              <note position="right" xlink:label="note-0173-01" xlink:href="note-0173-01a" xml:space="preserve">16. unde
                <lb/>
              cimi</note>
            norum ſectiones inter ſe æquidi-
              <lb/>
            ſtant: </s>
            <s xml:id="echoid-s4334" xml:space="preserve">atque æquidiſtant b _k_, g h:
              <lb/>
            </s>
            <s xml:id="echoid-s4335" xml:space="preserve">linea h _k_ ipſi g b eſt æqualis: </s>
            <s xml:id="echoid-s4336" xml:space="preserve">& </s>
            <s xml:id="echoid-s4337" xml:space="preserve">pro
              <lb/>
              <note position="right" xlink:label="note-0173-02" xlink:href="note-0173-02a" xml:space="preserve">34. primi</note>
            pterea proportionalis inter a b,
              <lb/>
            d e. </s>
            <s xml:id="echoid-s4338" xml:space="preserve">quare ut a b ad h K, ita eſt h
              <emph style="sc">K</emph>
              <lb/>
            ad d e. </s>
            <s xml:id="echoid-s4339" xml:space="preserve">fiat ut h k ad d e, ita d e
              <lb/>
            ad aliam lineam, in qua ſit m. </s>
            <s xml:id="echoid-s4340" xml:space="preserve">erit
              <lb/>
            ex æquali ut a b ad d e, ita h k ad
              <lb/>
            m. </s>
            <s xml:id="echoid-s4341" xml:space="preserve">Et quoniam triangula a b c,
              <lb/>
              <note position="right" xlink:label="note-0173-03" xlink:href="note-0173-03a" xml:space="preserve">9. huius
                <lb/>
              corol.</note>
            h K l, d e f ſimilia ſunt; </s>
            <s xml:id="echoid-s4342" xml:space="preserve">triangulū
              <lb/>
            a b c ad triangulum h k l eſt, ut li-
              <lb/>
              <note position="right" xlink:label="note-0173-04" xlink:href="note-0173-04a" xml:space="preserve">20. ſexti</note>
            nea a b ad lineam d e: </s>
            <s xml:id="echoid-s4343" xml:space="preserve">triangulũ
              <lb/>
            autem h k l ad ipſum d e f eſt, ut h _k_ ad m. </s>
            <s xml:id="echoid-s4344" xml:space="preserve">ergo tríangulum
              <lb/>
              <note position="right" xlink:label="note-0173-05" xlink:href="note-0173-05a" xml:space="preserve">11. quinti</note>
            a b c ad triangulum h k l eandem proportionem habet,
              <lb/>
            quam triangulum h K l ad ipſum d e f. </s>
            <s xml:id="echoid-s4345" xml:space="preserve">Eodem modo in a-
              <lb/>
            liis fruſtis pyramidis idem demonſtrabitur.</s>
            <s xml:id="echoid-s4346" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4347" xml:space="preserve">Sit fruſtum coni, uel coni portionis a d: </s>
            <s xml:id="echoid-s4348" xml:space="preserve">& </s>
            <s xml:id="echoid-s4349" xml:space="preserve">ſecetur plano
              <lb/>
            per axem, cuius ſectio ſit a b c d, ita ut maior ipſius baſis ſit
              <lb/>
            circulus, uel ellipſis circa diametrum a b; </s>
            <s xml:id="echoid-s4350" xml:space="preserve">minor circa c d.
              <lb/>
            </s>
            <s xml:id="echoid-s4351" xml:space="preserve">Rurſus inter lineas a b, c d inueniatur proportionalis b e: </s>
            <s xml:id="echoid-s4352" xml:space="preserve">
              <lb/>
            & </s>
            <s xml:id="echoid-s4353" xml:space="preserve">ab e ducta e ſ æquid_i_ſtante b d, quæ lineam c a in f </s>
          </p>
        </div>
      </text>
    </echo>