Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(37)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div268
"
type
="
section
"
level
="
1
"
n
="
91
">
<
p
>
<
s
xml:id
="
echoid-s4629
"
xml:space
="
preserve
">
<
pb
o
="
37
"
file
="
0185
"
n
="
185
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
ducta fuerìnt, ira ut in unum punctum y coeant, erunt triã
<
lb
/>
gala u y l, x y p, t y _k_ inter ſe ſimilia: </
s
>
<
s
xml:id
="
echoid-s4630
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4631
"
xml:space
="
preserve
">ſimilia etiam triangu
<
lb
/>
la l y r, p y s, _k_ y q. </
s
>
<
s
xml:id
="
echoid-s4632
"
xml:space
="
preserve
">quare ut in 19 huius, demonſtrabitur
<
lb
/>
x p, ad p s: </
s
>
<
s
xml:id
="
echoid-s4633
"
xml:space
="
preserve
">itemq; </
s
>
<
s
xml:id
="
echoid-s4634
"
xml:space
="
preserve
">t k ad _k_ q èandem habere proportionẽ,
<
lb
/>
quam u l ad l r. </
s
>
<
s
xml:id
="
echoid-s4635
"
xml:space
="
preserve
">Sed ut u l ad l r, ita eſt triangulum a b c ad
<
lb
/>
triangulum a c d: </
s
>
<
s
xml:id
="
echoid-s4636
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4637
"
xml:space
="
preserve
">ut t k ad K q, ita triangulum e f g ad
<
lb
/>
triangulum e g h. </
s
>
<
s
xml:id
="
echoid-s4638
"
xml:space
="
preserve
">Vt autem triangulum a b c ad triangu-
<
lb
/>
lum a c d, ita pyramis a b c y ad pyramidem a c d y. </
s
>
<
s
xml:id
="
echoid-s4639
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4640
"
xml:space
="
preserve
">ut
<
lb
/>
triangulum e f g ad triangulum e g h, ita pyramis e f g y
<
lb
/>
ad pyramidem e g h y; </
s
>
<
s
xml:id
="
echoid-s4641
"
xml:space
="
preserve
">ergo ut pyramis a b c y ad pyramidẽ
<
lb
/>
a c d y, ita pyramis e f g y ad pyramidem e g h y. </
s
>
<
s
xml:id
="
echoid-s4642
"
xml:space
="
preserve
">reliquum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0185-01
"
xlink:href
="
note-0185-01a
"
xml:space
="
preserve
">19. quinti</
note
>
igitur fruſtũ l f ad reliquum fruſtũ l h eſt ut pyramis a b c y
<
lb
/>
ad pyramidem a c d y, hoc eſt ut u l ad l r, & </
s
>
<
s
xml:id
="
echoid-s4643
"
xml:space
="
preserve
">ut x p ad p s.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4644
"
xml:space
="
preserve
">Quòd cum fruſti l f centrum grauitatis ſit s: </
s
>
<
s
xml:id
="
echoid-s4645
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4646
"
xml:space
="
preserve
">fruſti l h ſit
<
lb
/>
centrum x: </
s
>
<
s
xml:id
="
echoid-s4647
"
xml:space
="
preserve
">conſtat punctum p totius fruſti a g grauitatis
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0185-02
"
xlink:href
="
note-0185-02a
"
xml:space
="
preserve
">8. Archi-
<
lb
/>
medis.</
note
>
eſſe centrum. </
s
>
<
s
xml:id
="
echoid-s4648
"
xml:space
="
preserve
">Eodem modo fiet demonſtratio etiam in
<
lb
/>
aliis pyramidibus.</
s
>
<
s
xml:id
="
echoid-s4649
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4650
"
xml:space
="
preserve
">Sit fruſtum a d à cono, uel coni portione abſciſſum, cu-
<
lb
/>
ius maior baſis circulus, uel ellipſis circa diametrum a b;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4651
"
xml:space
="
preserve
">minor circa diametrum c d: </
s
>
<
s
xml:id
="
echoid-s4652
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4653
"
xml:space
="
preserve
">axis e f. </
s
>
<
s
xml:id
="
echoid-s4654
"
xml:space
="
preserve
">diuidatur autẽ e f
<
lb
/>
in g, ita ut e g ad g f eandem proportionem habeat, quam
<
lb
/>
duplum diametri a b unà cum diametro c d ad duplum c d
<
lb
/>
unà cum a b. </
s
>
<
s
xml:id
="
echoid-s4655
"
xml:space
="
preserve
">Sitq; </
s
>
<
s
xml:id
="
echoid-s4656
"
xml:space
="
preserve
">g h quarta pars lineæ g e: </
s
>
<
s
xml:id
="
echoid-s4657
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4658
"
xml:space
="
preserve
">ſit ſ K item
<
lb
/>
quarta pars totius f e axis. </
s
>
<
s
xml:id
="
echoid-s4659
"
xml:space
="
preserve
">Rurfus quam proportionem
<
lb
/>
habet fruſtum a d ad conum, uel coni portionem, in eadẽ
<
lb
/>
baſi, & </
s
>
<
s
xml:id
="
echoid-s4660
"
xml:space
="
preserve
">æquali altitudine, habeat linea _k_ h ad h l. </
s
>
<
s
xml:id
="
echoid-s4661
"
xml:space
="
preserve
">Dico pun-
<
lb
/>
ctum l fruſti a d grauitatis centrum eſſe. </
s
>
<
s
xml:id
="
echoid-s4662
"
xml:space
="
preserve
">Si enim fieri po-
<
lb
/>
teſt, ſit m centrum: </
s
>
<
s
xml:id
="
echoid-s4663
"
xml:space
="
preserve
">producaturq; </
s
>
<
s
xml:id
="
echoid-s4664
"
xml:space
="
preserve
">l m extra fruſtum in n: </
s
>
<
s
xml:id
="
echoid-s4665
"
xml:space
="
preserve
">
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4666
"
xml:space
="
preserve
">ut n l ad l m, ita fiat circulus, uel ellipſis circa diametrũ
<
lb
/>
a b ad aliud ſpacium, in quo ſit o. </
s
>
<
s
xml:id
="
echoid-s4667
"
xml:space
="
preserve
">Itaque in circulo, uel
<
lb
/>
ellipſi circa diametrum a b rectilinea figura plane deſcri-
<
lb
/>
batur, ita ut quæ relinquuntur portiones ſint o ſpacio mi-
<
lb
/>
nores: </
s
>
<
s
xml:id
="
echoid-s4668
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4669
"
xml:space
="
preserve
">inteiligatur pyramis a p b, baſim habens rectili-
<
lb
/>
neam figuram in circulo, uel ellipſi a b deſcriptam: </
s
>
<
s
xml:id
="
echoid-s4670
"
xml:space
="
preserve
">à </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>