Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < (44) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div182" type="section" level="1" n="56">
          <p>
            <s xml:id="echoid-s2617" xml:space="preserve">
              <pb o="44" file="0099" n="99" rhead="DE IIS QVAE VEH. IN AQVA."/>
            gura: </s>
            <s xml:id="echoid-s2618" xml:space="preserve">& </s>
            <s xml:id="echoid-s2619" xml:space="preserve">alia eadem diſponantur demonſtrabimus rurſum
              <lb/>
            n t æqualem eſſe ipſi u i: </s>
            <s xml:id="echoid-s2620" xml:space="preserve">& </s>
            <s xml:id="echoid-s2621" xml:space="preserve">portiones a u q, a n z inter
              <lb/>
            ſe ſe æquales.
              <lb/>
            </s>
            <s xml:id="echoid-s2622" xml:space="preserve">
              <figure xlink:label="fig-0099-01" xlink:href="fig-0099-01a" number="65">
                <image file="0099-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0099-01"/>
              </figure>
            Itaque quoniã
              <lb/>
            ĩ portionibus
              <lb/>
            æqualibus, & </s>
            <s xml:id="echoid-s2623" xml:space="preserve">ſi
              <lb/>
            milibus a u q l,
              <lb/>
            a n z g ductæ
              <lb/>
            sũt a q, a z, por
              <lb/>
            tiones æqua-
              <lb/>
            les auferentes;
              <lb/>
            </s>
            <s xml:id="echoid-s2624" xml:space="preserve">cum diametris
              <lb/>
            portionum æ-
              <lb/>
            quales angu-
              <lb/>
            los cõtinebũt. </s>
            <s xml:id="echoid-s2625" xml:space="preserve">
              <lb/>
            ergo triangulo
              <lb/>
            rum n l s, u ω c
              <lb/>
            anguli, qui cõ-
              <lb/>
            ſiſtũt ad l ω pũ-
              <lb/>
            cta, æquales ſunt: </s>
            <s xml:id="echoid-s2626" xml:space="preserve">& </s>
            <s xml:id="echoid-s2627" xml:space="preserve">b s recta linea æqualis ipſi b c: </s>
            <s xml:id="echoid-s2628" xml:space="preserve">ſ r ipſi cr,
              <lb/>
            n χ ipſi u h: </s>
            <s xml:id="echoid-s2629" xml:space="preserve">& </s>
            <s xml:id="echoid-s2630" xml:space="preserve">χ tipſi h i. </s>
            <s xml:id="echoid-s2631" xml:space="preserve">quòd cum u y dupla ſit ipſius y i,
              <lb/>
            erit n χ maior, quàm dupla χ t. </s>
            <s xml:id="echoid-s2632" xml:space="preserve">Sit igitur n m ipſius m t du
              <lb/>
            pla. </s>
            <s xml:id="echoid-s2633" xml:space="preserve">Rurſus ex his manifeſtum eſt, non manere ipſam por-
              <lb/>
            tionem; </s>
            <s xml:id="echoid-s2634" xml:space="preserve">ſed inclinari ex parte a: </s>
            <s xml:id="echoid-s2635" xml:space="preserve">ponebatur autem portio
              <lb/>
            humidi ſuperficiem in uno puncto contingere. </s>
            <s xml:id="echoid-s2636" xml:space="preserve">ergo ne-
              <lb/>
            ceſſe eſt, ut eius baſis in humidum magis demergatur.</s>
            <s xml:id="echoid-s2637" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div184" type="section" level="1" n="57">
          <head xml:id="echoid-head62" xml:space="preserve">DEMONSTRATIO QVINT AE PARTIS.</head>
          <p>
            <s xml:id="echoid-s2638" xml:space="preserve">HABEAT denique portio ad humidum in grauitate
              <lb/>
            minorem proportionem, quàm quadratum f p ad quadra-
              <lb/>
            tum b d: </s>
            <s xml:id="echoid-s2639" xml:space="preserve">& </s>
            <s xml:id="echoid-s2640" xml:space="preserve">quam proportionem habet portio ad humidũ
              <lb/>
            in grauitate, eandem quadratum, quod fit à linea ψ habeat
              <lb/>
            ad quadratum b d. </s>
            <s xml:id="echoid-s2641" xml:space="preserve">erit χ minor ipſa p f. </s>
            <s xml:id="echoid-s2642" xml:space="preserve">Rurſus </s>
          </p>
        </div>
      </text>
    </echo>