Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(44)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div182
"
type
="
section
"
level
="
1
"
n
="
56
">
<
p
>
<
s
xml:id
="
echoid-s2617
"
xml:space
="
preserve
">
<
pb
o
="
44
"
file
="
0099
"
n
="
99
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
gura: </
s
>
<
s
xml:id
="
echoid-s2618
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2619
"
xml:space
="
preserve
">alia eadem diſponantur demonſtrabimus rurſum
<
lb
/>
n t æqualem eſſe ipſi u i: </
s
>
<
s
xml:id
="
echoid-s2620
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2621
"
xml:space
="
preserve
">portiones a u q, a n z inter
<
lb
/>
ſe ſe æquales.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2622
"
xml:space
="
preserve
">
<
figure
xlink:label
="
fig-0099-01
"
xlink:href
="
fig-0099-01a
"
number
="
65
">
<
image
file
="
0099-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0099-01
"/>
</
figure
>
Itaque quoniã
<
lb
/>
ĩ portionibus
<
lb
/>
æqualibus, & </
s
>
<
s
xml:id
="
echoid-s2623
"
xml:space
="
preserve
">ſi
<
lb
/>
milibus a u q l,
<
lb
/>
a n z g ductæ
<
lb
/>
sũt a q, a z, por
<
lb
/>
tiones æqua-
<
lb
/>
les auferentes;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2624
"
xml:space
="
preserve
">cum diametris
<
lb
/>
portionum æ-
<
lb
/>
quales angu-
<
lb
/>
los cõtinebũt. </
s
>
<
s
xml:id
="
echoid-s2625
"
xml:space
="
preserve
">
<
lb
/>
ergo triangulo
<
lb
/>
rum n l s, u ω c
<
lb
/>
anguli, qui cõ-
<
lb
/>
ſiſtũt ad l ω pũ-
<
lb
/>
cta, æquales ſunt: </
s
>
<
s
xml:id
="
echoid-s2626
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2627
"
xml:space
="
preserve
">b s recta linea æqualis ipſi b c: </
s
>
<
s
xml:id
="
echoid-s2628
"
xml:space
="
preserve
">ſ r ipſi cr,
<
lb
/>
n χ ipſi u h: </
s
>
<
s
xml:id
="
echoid-s2629
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2630
"
xml:space
="
preserve
">χ tipſi h i. </
s
>
<
s
xml:id
="
echoid-s2631
"
xml:space
="
preserve
">quòd cum u y dupla ſit ipſius y i,
<
lb
/>
erit n χ maior, quàm dupla χ t. </
s
>
<
s
xml:id
="
echoid-s2632
"
xml:space
="
preserve
">Sit igitur n m ipſius m t du
<
lb
/>
pla. </
s
>
<
s
xml:id
="
echoid-s2633
"
xml:space
="
preserve
">Rurſus ex his manifeſtum eſt, non manere ipſam por-
<
lb
/>
tionem; </
s
>
<
s
xml:id
="
echoid-s2634
"
xml:space
="
preserve
">ſed inclinari ex parte a: </
s
>
<
s
xml:id
="
echoid-s2635
"
xml:space
="
preserve
">ponebatur autem portio
<
lb
/>
humidi ſuperficiem in uno puncto contingere. </
s
>
<
s
xml:id
="
echoid-s2636
"
xml:space
="
preserve
">ergo ne-
<
lb
/>
ceſſe eſt, ut eius baſis in humidum magis demergatur.</
s
>
<
s
xml:id
="
echoid-s2637
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div184
"
type
="
section
"
level
="
1
"
n
="
57
">
<
head
xml:id
="
echoid-head62
"
xml:space
="
preserve
">DEMONSTRATIO QVINT AE PARTIS.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2638
"
xml:space
="
preserve
">HABEAT denique portio ad humidum in grauitate
<
lb
/>
minorem proportionem, quàm quadratum f p ad quadra-
<
lb
/>
tum b d: </
s
>
<
s
xml:id
="
echoid-s2639
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2640
"
xml:space
="
preserve
">quam proportionem habet portio ad humidũ
<
lb
/>
in grauitate, eandem quadratum, quod fit à linea ψ habeat
<
lb
/>
ad quadratum b d. </
s
>
<
s
xml:id
="
echoid-s2641
"
xml:space
="
preserve
">erit χ minor ipſa p f. </
s
>
<
s
xml:id
="
echoid-s2642
"
xml:space
="
preserve
">Rurſus </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>