Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="91">
          <p>
            <s xml:space="preserve">
              <pb file="0182" n="182" rhead="FED. COMMANDINI"/>
            nis, quouſque in unum punctum r conueniant; </s>
            <s xml:space="preserve">erit pyra-
              <lb/>
            midis a b c r, & </s>
            <s xml:space="preserve">pyramidis d e f r grauitatis centrum in li-
              <lb/>
            nea r h. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">reliquæ magnitudinis, uidelicet fruſti cen-
              <lb/>
            trum in eadem linea neceſſario comperietur. </s>
            <s xml:space="preserve">Iungantur
              <lb/>
            d b, d c, d h, d m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per lineas d b, d c ducto altero plano
              <lb/>
            intelligatur fruſtum in duas pyramides diuiſum: </s>
            <s xml:space="preserve">in pyra-
              <lb/>
            midem quidem, cuius baſis eſt triangulum a b c, uertex d:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in eam, cuius idem uertex, & </s>
            <s xml:space="preserve">baſis trapezium b c f e. </s>
            <s xml:space="preserve">erit
              <lb/>
            igitur pyramidis a b c d axis d h, & </s>
            <s xml:space="preserve">pyramidis b c f e d axis
              <lb/>
            d m: </s>
            <s xml:space="preserve">atque erunt tres axes g h, d h, d m in eodem plano
              <lb/>
            d a K l. </s>
            <s xml:space="preserve">ducatur præterea per o linea ſt ip ſi a K æquidiſtãs,
              <lb/>
            quæ lineam d h in u ſecet: </s>
            <s xml:space="preserve">per p uero ducatur x y æquidi-
              <lb/>
            ſtans eidem, ſecansque d m in
              <lb/>
              <anchor type="figure" xlink:label="fig-0182-01a" xlink:href="fig-0182-01"/>
            z: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungatur z u, quæ ſecet
              <lb/>
            g h in φ. </s>
            <s xml:space="preserve">tranſibit ea per q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            erunt φ q unum, atque idem
              <lb/>
            pun ctum; </s>
            <s xml:space="preserve">ut inferius appare-
              <lb/>
            bit. </s>
            <s xml:space="preserve">Quoniam igitur linea u o
              <lb/>
            æ quidiſtat ipſi d g, erit d u ad
              <lb/>
              <anchor type="note" xlink:label="note-0182-01a" xlink:href="note-0182-01"/>
            u h, ut g o ad o h. </s>
            <s xml:space="preserve">Sed g o tri-
              <lb/>
            pla eſt o h. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">d u ipſius
              <lb/>
            u h eſt tripla: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ideo pyrami-
              <lb/>
            dis a b c d centrum grauitatis
              <lb/>
            erit punctum 11. </s>
            <s xml:space="preserve">Rurſus quo-
              <lb/>
            niam z y ipſi d l æquidiſtat, d z
              <lb/>
            a d z m eſt, utly ad y m: </s>
            <s xml:space="preserve">eſtque
              <lb/>
            ly ad y m, ut g p ad p n. </s>
            <s xml:space="preserve">ergo
              <lb/>
            d z ad z m eſt, ut g p ad p n.
              <lb/>
            </s>
            <s xml:space="preserve">Quòd cum g p ſit tripla p n; </s>
            <s xml:space="preserve">
              <lb/>
            erit etiam d z ipſius z m tri-
              <lb/>
            pla. </s>
            <s xml:space="preserve">atque ob eandem cauſ-
              <lb/>
            ſam punctum z eſt centrũ gra-
              <lb/>
            uitatis pyramidis b c f e d. </s>
            <s xml:space="preserve">iun
              <lb/>
            ctaigitur z u, in ea erit cẽtrum</s>
          </p>
        </div>
      </text>
    </echo>