Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < (13) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb o="13" file="0137" n="137" rhead="DE CENTRO GRAVIT. SOLID."/>
            trianguli g h K, & </s>
            <s xml:space="preserve">ipſius ρ τ axis medium.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="left" xlink:label="note-0132-02" xlink:href="note-0132-02a" xml:space="preserve">5. huius</note>
            <figure xlink:label="fig-0133-01" xlink:href="fig-0133-01a">
              <image file="0133-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0133-01"/>
            </figure>
            <note position="right" xlink:label="note-0133-01" xlink:href="note-0133-01a" xml:space="preserve">2. ſexti.</note>
            <note position="right" xlink:label="note-0133-02" xlink:href="note-0133-02a" xml:space="preserve">I1. quinti</note>
            <note position="right" xlink:label="note-0133-03" xlink:href="note-0133-03a" xml:space="preserve">2. ſexti.</note>
            <note position="left" xlink:label="note-0134-01" xlink:href="note-0134-01a" xml:space="preserve">19. ſexti</note>
            <figure xlink:label="fig-0134-01" xlink:href="fig-0134-01a">
              <image file="0134-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0134-01"/>
            </figure>
            <note position="left" xlink:label="note-0134-02" xlink:href="note-0134-02a" xml:space="preserve">2. uel 121
              <lb/>
            quinti.</note>
            <note position="right" xlink:label="note-0135-01" xlink:href="note-0135-01a" xml:space="preserve">8. quinti.</note>
            <note position="right" xlink:label="note-0135-02" xlink:href="note-0135-02a" xml:space="preserve">28. unde
              <lb/>
            cimi</note>
            <note position="right" xlink:label="note-0135-03" xlink:href="note-0135-03a" xml:space="preserve">15. quinti</note>
            <note position="right" xlink:label="note-0135-04" xlink:href="note-0135-04a" xml:space="preserve">19. quinti
              <lb/>
            apud Cã
              <lb/>
            panum.</note>
            <figure xlink:label="fig-0136-01" xlink:href="fig-0136-01a">
              <image file="0136-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0136-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit priſma a g, cuius oppoſita plana ſint quadrilatera
              <lb/>
            a b c d, e f g h: </s>
            <s xml:space="preserve">ſecenturq; </s>
            <s xml:space="preserve">a e, b f, c g, d h bifariam: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per di-
              <lb/>
            uiſiones planum ducatur; </s>
            <s xml:space="preserve">quod ſectionem faciat quadrila-
              <lb/>
            terum _K_ l m n. </s>
            <s xml:space="preserve">Deinde iuncta a c per lineas a c, a e ducatur
              <lb/>
            planum ſecãs priſma, quod ipſum diuidet in duo priſmata
              <lb/>
            triangulares baſes habentia a b c e f g, a d c e h g. </s>
            <s xml:space="preserve">Sint autẽ
              <lb/>
            triangulorum a b c, e f g gra-
              <lb/>
              <anchor type="figure" xlink:label="fig-0137-01a" xlink:href="fig-0137-01"/>
            uitatis centra o p: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangu-
              <lb/>
            lorum a d c, e h g centra q r:
              <lb/>
            </s>
            <s xml:space="preserve">iunganturq; </s>
            <s xml:space="preserve">o p, q r; </s>
            <s xml:space="preserve">quæ pla-
              <lb/>
            no _k_ l m n occurrant in pun-
              <lb/>
            ctis s t. </s>
            <s xml:space="preserve">erit ex iis, quæ demon
              <lb/>
            ſtrauimus, punctum s grauita
              <lb/>
            tis centrum trianguli k l m; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            ipſius priſmatis a b c e f g: </s>
            <s xml:space="preserve">pun
              <lb/>
            ctum uero t centrum grauita
              <lb/>
            tis trianguli _K_ n m, & </s>
            <s xml:space="preserve">priſma-
              <lb/>
            tis a d c, e h g. </s>
            <s xml:space="preserve">iunctis igitur
              <lb/>
            o q, p r, s t, erit in linea o q cẽ
              <lb/>
            trum grauitatis quadrilateri
              <lb/>
            a b c d, quod ſit u: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in linea
              <lb/>
            p r cẽtrum quadrilateri e f g h
              <lb/>
            ſit autem x. </s>
            <s xml:space="preserve">deniqueiungatur
              <lb/>
            u x, quæ ſecet lineam ſ t in y. </s>
            <s xml:space="preserve">ſe
              <lb/>
            cabit enim cum ſint in eodem
              <lb/>
              <anchor type="note" xlink:label="note-0137-01a" xlink:href="note-0137-01"/>
            plano: </s>
            <s xml:space="preserve">atq; </s>
            <s xml:space="preserve">erit y grauitatis centrum quadril ateri _K_ lm n.
              <lb/>
            </s>
            <s xml:space="preserve">Dico idem punctum y centrum quoque gra uitatis eſſe to-
              <lb/>
            tius priſmatis. </s>
            <s xml:space="preserve">Quoniam enim quadri lateri k lm n graui-
              <lb/>
            tatis centrum eſt y: </s>
            <s xml:space="preserve">linea s y ad y t eandem proportionem
              <lb/>
            habebit, quam triangulum k n m ad triangulum k lm, ex 8
              <lb/>
            Archimedis de centro grauitatis planorum. </s>
            <s xml:space="preserve">Vtautem triã
              <lb/>
            gulum k n m ad ipſum k l m, hoc eſt ut triangulum a d c ad
              <lb/>
            triangulum a b c, æqualia enim ſunt, ita priſina a d c e h g</s>
          </p>
        </div>
      </text>
    </echo>