Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < (5) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="65">
          <p>
            <s xml:space="preserve">
              <pb o="5" file="0121" n="121" rhead="DE CENTRO GRAVIT. SOLID."/>
            quo ſcilicet ln, om conueniunt. </s>
            <s xml:space="preserve">Poſtremo in figura
              <lb/>
            a p l q b r m s c t n u d x o y centrum grauitatis trian
              <lb/>
            guli pay, & </s>
            <s xml:space="preserve">trapezii ploy eſtin linea a z: </s>
            <s xml:space="preserve">trapeziorum
              <lb/>
            uero lqxo, q b d x centrum eſtin linea z k: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trapeziorũ
              <lb/>
            b r u d, r m n u in k φ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">denique trapezii m s t n; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangu
              <lb/>
            li s c t in φ c. </s>
            <s xml:space="preserve">quare magnitudinis ex his compoſitæ centrū
              <lb/>
            in linea a c conſiſtit. </s>
            <s xml:space="preserve">Rurſus trianguli q b r, & </s>
            <s xml:space="preserve">trapezii q l
              <lb/>
            m r centrum eſt in linea b χ: </s>
            <s xml:space="preserve">trapeziorum l p s m, p a c s,
              <lb/>
            a y t c, y o n t in linea χ φ: </s>
            <s xml:space="preserve">trapeziiq; </s>
            <s xml:space="preserve">o x u n, & </s>
            <s xml:space="preserve">trianguli
              <lb/>
            x d u centrum in ψ d. </s>
            <s xml:space="preserve">totius ergo magnitudinis centrum
              <lb/>
            eſtin linea b d. </s>
            <s xml:space="preserve">ex quo ſequitur, centrum grauitatis figuræ
              <lb/>
            a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
              <lb/>
            b d commune, quæ omnia demonſtrare oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <note position="right" xlink:label="note-0119-01" xlink:href="note-0119-01a" xml:space="preserve">8. primi</note>
            <figure xlink:label="fig-0119-01" xlink:href="fig-0119-01a">
              <image file="0119-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0119-01"/>
            </figure>
            <note position="right" xlink:label="note-0119-02" xlink:href="note-0119-02a" xml:space="preserve">33. primit</note>
            <note position="left" xlink:label="note-0120-01" xlink:href="note-0120-01a" xml:space="preserve">28. primi.</note>
            <figure xlink:label="fig-0120-01" xlink:href="fig-0120-01a">
              <image file="0120-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0120-01"/>
            </figure>
            <note position="left" xlink:label="note-0120-02" xlink:href="note-0120-02a" xml:space="preserve">13. Archi
              <lb/>
            medis.</note>
            <note position="left" xlink:label="note-0120-03" xlink:href="note-0120-03a" xml:space="preserve">Vltima.</note>
          </div>
        </div>
        <div type="section" level="1" n="66">
          <head xml:space="preserve">THE OREMA III. PROPOSITIO III.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet portio-
              <lb/>
              <anchor type="figure" xlink:label="fig-0121-01a" xlink:href="fig-0121-01"/>
            nis circuli, & </s>
            <s xml:space="preserve">ellipſis,
              <lb/>
            quæ dimidia non ſit
              <lb/>
            maior, centrum graui
              <lb/>
            tatis in portionis dia-
              <lb/>
            metro conſiſtit.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0121-01" xlink:href="fig-0121-01a">
              <image file="0121-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0121-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">HOC eodem prorſus
              <lb/>
            modo demonſtrabitur,
              <lb/>
            quo in libro de centro gra
              <lb/>
            uitatis planorum ab Ar-
              <lb/>
            chimede demonſtratũ eſt,
              <lb/>
            in portione cõtenta recta
              <lb/>
            linea, & </s>
            <s xml:space="preserve">rectanguli coni ſe
              <lb/>
            ctione grauitatis cẽtrum
              <lb/>
            eſſe in diametro portio-
              <lb/>
            nis. </s>
            <s xml:space="preserve">Etita demonſtrari po
              <lb/>
              <anchor type="handwritten" xlink:label="hd-0121-02a" xlink:href="hd-0121-02"/>
            </s>
          </p>
        </div>
      </text>
    </echo>