Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000949">
                <pb pagenum="186" xlink:href="010/01/194.jpg"/>
                <arrow.to.target n="marg239"/>
                <lb/>
              tiæ ad diuulſionem exercetur in centro I circuli AB.
                <lb/>
              </s>
              <s id="s.000950">Habebimus igitur vectem inflexum CBI in quo vis
                <lb/>
                <expan abbr="mouẽs">mouens</expan>
              M applicatur in C, reſiſtentia verò applicatur
                <lb/>
              in I, & fulcimentum, ſeù centrum reuolutionis vectis
                <lb/>
              CBI eſt punctum B quod fixum perſeuerat dum cir­
                <lb/>
              ca ipſum motus, & reuolutiones partium vectis
                <expan abbr="fiũt">fiunt</expan>
              ;
                <lb/>
              Quaproptèr, iuxtà leges Mechanices, reſiſtentia to­
                <lb/>
              talis ad diuulſionem, & ſeparationem ſuperficiei AB
                <lb/>
              ab ipſo pauimento ad vim
                <expan abbr="mouẽtem">mouentem</expan>
              M eamdem pro­
                <lb/>
              portionem habebit, quam vectis longitudo CB ad
                <lb/>
              oppoſitam eius portionem BI, ſcilicèt habebit eam­
                <lb/>
              dem proportionem. </s>
              <s id="s.000951">quam pondus S habet ad pondus
                <lb/>
              R. </s>
              <s id="s.000952">Verùm pondus R æquale erat potentiæ M. igitur
                <lb/>
              pondus S æquale erit reſiſtentię abſolutæ, & totali,
                <lb/>
              quam exercet ſuperficies AB quando diuelli, & ſe­
                <lb/>
              parari debet à ſuperficie paui
                <expan abbr="mẽti">menti</expan>
              tractione directa.
                <lb/>
              </s>
              <s id="s.000953">Hinc deducitur quòd ſi
                <expan abbr="põ-">pon­
                  <lb/>
                </expan>
                <figure id="id.010.01.194.1.jpg" xlink:href="010/01/194/1.jpg"/>
                <lb/>
              dus O propoſitionis 89. di­
                <lb/>
              uellit columnam à pauimento
                <lb/>
              directione, & impetu tranſ­
                <lb/>
              uerſali, & perpendiculari ad
                <lb/>
              latus columnę, poterit nihilo­
                <lb/>
              minùs indagari
                <expan abbr="reſiſtẽtia">reſiſtentia</expan>
              ab­
                <lb/>
              ſoluta, & totalis contiguita­
                <lb/>
              tis, vel repugnantiæ ad vacuum earumdem ſuperfi­
                <lb/>
              cierum, eritque talis vis abſoluta tantomaior pon­
                <lb/>
              dere O, quantò altitudo columnæ CB maior eſt ſe­
                <lb/>
              miſſe diametri AB, & ſic ſi vis transuerſalitèr colum­
                <lb/>
              nam diuellens æqualis eſſet ponderi trium librarum </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>