Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001503
">
<
pb
pagenum
="
288
"
xlink:href
="
010/01/296.jpg
"/>
<
arrow.to.target
n
="
marg386
"/>
<
lb
/>
hæc illam metitur, vel non; & primò ponamus RS ab
<
lb
/>
A
<
expan
abbr
="
mẽſurari
">menſurari</
expan
>
, habebit ergo RS ad A eamdem propor
<
lb
/>
tionem, quam aliquis numerus finitus ad vnitatem,
<
lb
/>
& ideò in infinita multitudine partium A, B, C, &c.
<
lb
/>
ſumi poteſt multitudo partium, quæ maior ſit numero
<
lb
/>
partium ipſius RS, & prædicta maior multitudo par
<
lb
/>
tium efficiat
<
expan
abbr
="
extenſionẽ
">extenſionem</
expan
>
X proculdubio X maior erit
<
lb
/>
ipſa RS, at aggregatum ex infinitis particulis A, B, C,
<
lb
/>
&c. maiorem extenſionem creat quam prædicta mul
<
lb
/>
titudo finita X, ergo multò magis aggregatum ex in
<
lb
/>
finitis particulis maiorem extenſionem efficit, quàm
<
lb
/>
habeat RS, illa verò extenſio quæ maior eſt
<
expan
abbr
="
quacũq;
">quacunque</
expan
>
<
lb
/>
quantitate finita, neceſſariò infinita erit, ergo aggre
<
lb
/>
gatum ex particulis quantis numerò infinitis inter ſe
<
lb
/>
æqualibus efficit extenſionem infinitam. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.001504
">
<
margin.target
id
="
marg386
"/>
Cap. 7. dę
<
lb
/>
natura flui
<
lb
/>
ditatis.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001505
">Secundò ſint A, & RS inter
<
lb
/>
<
figure
id
="
id.010.01.296.1.jpg
"
xlink:href
="
010/01/296/1.jpg
"
number
="
111
"/>
<
lb
/>
ſe
<
expan
abbr
="
incõmenſurabilia
">incommenſurabilia</
expan
>
, patet ipſi
<
lb
/>
RS addi poſſe portionem aliæ
<
lb
/>
quam SV ita vt RV multiplex
<
lb
/>
ſit ipſius A, & tunc
<
expan
abbr
="
aggregatũ
">aggregatum</
expan
>
<
lb
/>
ex infinitis particulis æqualibus
<
lb
/>
A, B, C, &c. </
s
>
<
s
id
="
s.001506
"> maiorem extenſionem efficiet quàm
<
lb
/>
RV, vt mox oſtenſum fuit, & ideò multò maiorem
<
lb
/>
extenſionem, quàm RS, creabit, proptereaque infi
<
lb
/>
nitam eſſe concludemus.
<
lb
/>
<
figure
id
="
id.010.01.296.2.jpg
"
xlink:href
="
010/01/296/2.jpg
"
number
="
112
"/>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>