Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001548">
                <pb pagenum="295" xlink:href="010/01/303.jpg"/>
                <arrow.to.target n="marg394"/>
                <lb/>
              da erit. </s>
              <s id="s.001549">Et quia fluidum catenùs motum, quem fluxio­
                <lb/>
              nem vocamus, elicere poteſt, ſcilicèt catenus fluidum
                <lb/>
              eſt quatenùs eius aliquæ partes mouentur cæteris
                <lb/>
              quieſcentibus, vel diuerſis, & inæqualibus motibus
                <lb/>
              agitantur ab ijs, qui competunt duris, & continuis
                <lb/>
              corporibus; ergò ad hoc, vt nulla particula corporis
                <lb/>
              fluidi care at hac paſſione fluiditatis; oportet vt ſem­
                <lb/>
              per ei conueniat fluiditatis definitio, ſcilicèt ſemper
                <lb/>
              quælib et eius pars moueri poſſit cæteris quieſcenti­
                <lb/>
              bus, vel inæqualibus motibus agitentur, quàm ſint il­
                <lb/>
              li, qui duris, & continuis corporibus competunt. </s>
              <s id="s.001550">Sed
                <lb/>
              partes contiguæ eiuſdem maſſæ non poſſunt partim
                <lb/>
              moueri, partim quieſcere, vel inæqualibus motibus
                <lb/>
              agitari diuerſo modo, ac continuis corporibus
                <expan abbr="cõ-">con­
                  <lb/>
                </expan>
                <arrow.to.target n="marg395"/>
                <lb/>
              petit, niſi inter ſe ſint diuiſæ, & diſcretæ; igitur nul­
                <lb/>
              la particula fluidi corporis quantumuis exigua aſſi­
                <lb/>
              gnari poteſt, quæ actu diſſecta, & ſubdiuiſa non ſit in
                <lb/>
              plures alias particulas; qua propter nunquam perue­
                <lb/>
              niri poterit ad finem enumerationis multitudinis par­
                <lb/>
              tium eius, & ideò talis multitudo maior erit
                <expan abbr="quocũ-que">quocun­
                  <lb/>
                que</expan>
              numero, ſcilicèt maior quacumque quantitatę
                <lb/>
              finita, ergo infinita erit; at infinitæ partes actu diui­
                <lb/>
                <arrow.to.target n="marg396"/>
                <lb/>
              ſæ ſi eſſent quantæ ſiue inter ſe æquales, ſiue non, effi­
                <lb/>
              cerent
                <expan abbr="extẽſionem">extenſionem</expan>
              in finitam, ergò ſphęra fluida pal­
                <lb/>
              maris eſſet infinitæ magnitudinis, quod eſt falſum̨,
                <lb/>
              igitur non quantæ, ſed indiuiſibilia puncta erunt; hoc
                <lb/>
                <arrow.to.target n="marg397"/>
                <lb/>
              verò eſt quoque impoſſibile, cùm infinita puncta ex­
                <lb/>
              tenſionem quantam nequeant componere: ergò fal­
                <lb/>
              ſum eſt, quòd minimæ particulæ ex quibus fluidum̨ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>