Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000363">
                <pb pagenum="77" xlink:href="010/01/085.jpg"/>
                <arrow.to.target n="marg84"/>
                <lb/>
              quieſcat, ſiue circa eius axim
                <lb/>
                <figure id="id.010.01.085.1.jpg" xlink:href="010/01/085/1.jpg" number="36"/>
                <lb/>
              M conuertatur libra ſemper
                <lb/>
              in ſitu horizontali æquilibra­
                <lb/>
              ta perſiſtet. </s>
            </p>
            <p type="margin">
              <s id="s.000364">
                <margin.target id="marg84"/>
              Cap. 3. flui­
                <lb/>
              dum in ſuo
                <lb/>
              toto quie­
                <lb/>
              ſcens pon­
                <lb/>
              derat.</s>
            </p>
            <p type="main">
              <s id="s.000365">Vt verò ratio huius effectus
                <lb/>
              percipiatur, recurrendum eſt
                <lb/>
              ad centri grauitatis definitio­
                <lb/>
              nem, ex qua habetur quòd corpus quodlibet ſuſpen­
                <lb/>
              ſum à centro grauitatis eius quomodocumque reuol­
                <lb/>
              uatur circa centrum, ſemper æquilibrari, & haberę
                <lb/>
              partes æqualium momentorum, vnde infertur, quòd
                <lb/>
              vniuerſa vis, qua corpus aliquod
                <expan abbr="tẽdit">tendit</expan>
              deorsùm, ſci­
                <lb/>
              licet grauitas eius, exercetur in vnico illo puncto,
                <lb/>
              quod centrum grauitatis eius vocatur. </s>
              <s id="s.000366">Hinc deduci­
                <lb/>
              tur, quod ſi rota, ſiuè pila ſuſtineatur ex centro gra­
                <lb/>
              uitatis eius ſiuè quieſcat, ſiuè moueatur, numquam
                <lb/>
              centrum grauitatis ſitum commutabit, aliàs daretur
                <lb/>
              motus perpetuus, qui naturæ legibus repugnat. </s>
            </p>
            <p type="main">
              <s id="s.000367">Similitèr ſi concipiatur fiſtula vitrea inflexa ad
                <lb/>
              modum anuli, vt eſt EFGK, ſitque prædicta fiſtulą
                <lb/>
              plena aqua ſituata perpendiculari­
                <lb/>
                <figure id="id.010.01.085.2.jpg" xlink:href="010/01/085/2.jpg" number="37"/>
                <lb/>
              tèr ſuper planum ſubiectum RS à
                <lb/>
              quo fulciatur; habebit profectò
                <expan abbr="cẽ-trum">cen­
                  <lb/>
                trum</expan>
              grauitatis in eius puncto in­
                <lb/>
              termedio N, dum quieſcit aqua iņ
                <lb/>
              prædicto anulo, at ſi reuoluatur vt
                <lb/>
              nimirùm pars EFG deſcendat, reliqua verò GKE
                <lb/>
              ſursùm
                <expan abbr="aſcẽdat">aſcendat</expan>
              , non proindè centrum grauitatis
                <expan abbr="trãſ-feretur">tranſ­
                  <lb/>
                feretur</expan>
              ab N versùs O, ſcilicèt intra ſemicirculum̨ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>