Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000394">
                <pb pagenum="83" xlink:href="010/01/091.jpg"/>
                <arrow.to.target n="marg93"/>
                <lb/>
              remus. </s>
              <s id="s.000395">Præcipua eius ratio hæc eſt, quia reperiun­
                <lb/>
              tur duo loca contraria in natura ſursùm, & deorsùm,
                <lb/>
              ſcilicèt circumferentia, & centrum mundi, ſeu ter­
                <lb/>
              ræ; & euidentèr apparet, quòd terra infima eſt, &
                <lb/>
              ſubiacet omnibus alijs corporibus
                <expan abbr="mũdanis">mundanis</expan>
              , demer­
                <lb/>
              gitur enìm deſcendendo infrà aerem, & infra
                <expan abbr="aquã">aquam</expan>
              ,
                <lb/>
              quouſque ad locum infimum perducatur, nempè ad
                <lb/>
              centrum, quando nimirum ea non impeditur; hinc
                <lb/>
              deducit, ergo terra eſt abſolutè, & ſimplicitèr gra­
                <lb/>
              uis, & non relatiuè. </s>
              <s id="s.000396">E contrà videmus aerem pene­
                <lb/>
              trare denſitatem ipſius aquæ, & aſcendere ſuper
                <expan abbr="">eam</expan>
              ,
                <lb/>
              & ignem perforare
                <expan abbr="denſitatẽ">denſitatem</expan>
                <expan abbr="">tum</expan>
              aquę, tùm aeris, per­
                <lb/>
              ducique ad ſupremam, & extremam ſuperficiem ae­
                <lb/>
              ris, veluti ad locum ſuum
                <expan abbr="naturalẽ">naturalem</expan>
              ſupremum, vbi
                <lb/>
              tandèm quieſcit, nec vlteriùs mouetur. </s>
              <s id="s.000397">Et quia, in­
                <lb/>
              quit, ignis omnibus ſupereminet, igitur eſt ſimpli­
                <lb/>
              citèr, & abſolutè leuis; terra omnibus ſubijcitur, igi­
                <lb/>
              tur eſt abſolutè grauis. </s>
            </p>
            <p type="margin">
              <s id="s.000398">
                <margin.target id="marg93"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000399">Vt verò vim, & energiam Ariſtotelici ratiocinij
                <lb/>
              percipiamus, & exactè perpendamus, oportet vt ſta­
                <lb/>
              tum controuerſiæ memoremus, ſcilicèt theſim Pla­
                <lb/>
              tonis, atque Democriti, quam Ariſtoteles redargue­
                <lb/>
              re profitetur, ante oculos ponamus, & poſtea argu­
                <lb/>
              mentum ab Ariſtotele adhibitum conſideremus. </s>
              <s id="s.000400">Et
                <lb/>
              primò ratum perſpectumque eſt duplici modo fieri
                <lb/>
              poſſe vt ignis ſursùm perducatur, & ſuper omnia e­
                <lb/>
              lementa emineat, aut nempè quia ignis ſponte ſuą
                <lb/>
              mouetur ſursùm à principio intrinſeco, & naturali,
                <lb/>
              ſcilicèt à leuitate, vel potiùs, quia ibidem ignis ex-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>