Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.002492
">
<
pb
pagenum
="
473
"
xlink:href
="
010/01/481.jpg
"/>
<
arrow.to.target
n
="
marg646
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002493
">
<
margin.target
id
="
marg645
"/>
Prop. 221.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002494
">
<
margin.target
id
="
marg646
"/>
Cap. 11. gra
<
lb
/>
uia in fluido
<
lb
/>
velocitati
<
lb
/>
bus inæqua
<
lb
/>
libus ferri
<
lb
/>
debere.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002495
">Secundò ſint cylindri AC, DF aqua grauiores; o
<
lb
/>
ſtendetur (ex prop. 221.) quod deſcenſus X ad de
<
lb
/>
ſcenſum Z, eodem tempore T factum, eſt ſicuti altitu
<
lb
/>
do GB ad DE, & hoc erat, &c. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002496
">
<
emph
type
="
center
"/>
PROP. CCXXIX.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002497
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Poſtea ſi duo coni homogenei baſes æquales, & inæquales al
<
lb
/>
titudines habuerint, & verticibus ſursùm vergentibus,
<
lb
/>
itaut axes eorum ſemper inter ſe æquidistantes ſint, &
<
lb
/>
infra aquam exiſtentibus percurrant aſcendendo, vel
<
lb
/>
deſcendendo ſpatia æqualia; tempora contrario ordine re
<
lb
/>
ſpondebunt ſubduplicatæ proportioni altitudinum.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002498
">SInt duo coni eiuſdem materiei ABC, DEF, ſed
<
lb
/>
primò aqua leuiores, eorum baſes BC, & EF æ
<
lb
/>
quales ſint, altitudo verò illius maior ſit huius altitu
<
lb
/>
dine, inter quas ponatur GB media proportionalis;
<
lb
/>
tendant verò ambo ſursùm præcedendo vertices A,
<
lb
/>
& D, vt eorum axes paralleli ſint,
<
expan
abbr
="
percurrãtque
">percurrantque</
expan
>
<
expan
abbr
="
aſcẽ-dendo
">aſcen
<
lb
/>
dendo</
expan
>
ſpatia æqualia AH, & DN
<
lb
/>
<
figure
id
="
id.010.01.481.1.jpg
"
xlink:href
="
010/01/481/1.jpg
"
number
="
167
"/>
<
lb
/>
nempe ABC tempore T, at DEF
<
lb
/>
tempore V; dico tempus V ad
<
expan
abbr
="
tẽ-pus
">ten
<
lb
/>
pus</
expan
>
T eſſe vt GB ad DE; quia æ
<
lb
/>
qualia ſpatia percurrunt ſursùm̨
<
lb
/>
aſcendendo ſolida ABC, DEF,
<
lb
/>
ergo ſuis baſibus æqualibus dere
<
lb
/>
linquunt ſpatia æqualia, & æquè
<
lb
/>
alta IBCK, & OEFP, & ibidem̨
<
lb
/>
fluere debent æquales aquæ moles
<
lb
/>
conos ambientes, quæ è ſupremis locis expelli de
<
lb
/>
bent, excurrunt verò prædictæ aquæ moles per ſi-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>