Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000936">
                <pb pagenum="183" xlink:href="010/01/191.jpg"/>
                <arrow.to.target n="marg235"/>
                <lb/>
              dri extremitas C termino H trochleæ, vel libræ HK
                <lb/>
              radiorum æqualium, cuius centrum I, & reliquo ex­
                <lb/>
              tremo K ſuſpendatur pondus N æquale grauitati ab­
                <lb/>
              ſolutæ cylindri AC. profectò manifeſtum eſt ſenſui
                <lb/>
              non ſufficere pondus N ad ſeparandum, & diuellen­
                <lb/>
              dum cylindrum AC à pauimento DE, ſed requiritur
                <lb/>
              aliqua vis multò maior illa, quæ reperiri
                <expan abbr="aſſignariq;">aſſignarique</expan>
                <lb/>
                <arrow.to.target n="marg236"/>
                <lb/>
              poterit, non enim eſt infinita, igitur ſi addatur con­
                <lb/>
              tinentèr pondus ponderi termino K
                <expan abbr="tãdem">tandem</expan>
              deuenie­
                <lb/>
              mus ad pondus aliquod, vt eſt O à quo cvlindrus CA
                <lb/>
              directa tractione diuelli à pauimento poterit. </s>
              <s id="s.000937">Quia
                <lb/>
              verò duo pondera N, & O directè diuellunt
                <expan abbr="cylindrũ">cylindrum</expan>
                <lb/>
              AC, & hic reſiſtit ſeparationi duabus viribus, pro­
                <lb/>
              prij ſcilicèt ponderis æqualis nempè ipſi N, & vi
                <lb/>
              contactus, & repugnantiæ ad vacuum
                <expan abbr="admmittendũ">admittendum</expan>
              .
                <lb/>
              </s>
              <s id="s.000938">igitur remanens vis ponderis O æqualis erit, & aucta
                <lb/>
              ſuperabit vim connexionis duarum ſuperficierum ſe
                <lb/>
              mutuò exquiſitè tangentium. </s>
            </p>
            <p type="margin">
              <s id="s.000939">
                <margin.target id="marg235"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.000940">
                <margin.target id="marg236"/>
              Sup. 8.</s>
            </p>
            <p type="main">
              <s id="s.000941">Non defuit tamen qui hunc progreſſum in
                <expan abbr="dubiũ">dubium</expan>
                <lb/>
              reuocare auſus ſit, & ſic inutilem, ac inefficacem vni­
                <lb/>
              uerſam demonſtrationem ſubſequentem redderę,
                <lb/>
              quę in prædicta experimentali operatione fundatur.
                <lb/>
              </s>
              <s id="s.000942">Nucleus difficultatis talis eſt, non videri poſſibilę
                <lb/>
              columnam AC vnquam poſſe motu tàm directo ſur­
                <lb/>
              sùm trahi, nec libra, nec trochlea itaut non flectatur
                <lb/>
              inclineturque, & hoc (inquiunt) nullo pacto huma­
                <lb/>
              na diligentia aſſe qui poſſe; imò aſſerere auſi ſunt,
                <lb/>
              quòd ſi funis HC directè traheretur perpendiculari­
                <lb/>
              tèr nimirùm ad planum horizontis, & ad baſim DE </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>